K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2019

a) \(4x^2-81=\left(2x\right)^2-9^2=\left(2x-9\right)\left(2x+9\right)\)

b) \(3\left(x-y\right)+5x\left(y-x\right)=3\left(x-y\right)-5x\left(x-y\right)=\left(x-y\right)\left(3-5x\right)\)

c) \(x\left(x+y\right)+6x+6y=x\left(x+y\right)+6\left(x+y\right)=\left(x+y\right)\left(x+6\right)\)

d) \(20x-5y=5\left(4x-y\right)\)

e) \(=2xy\left(5xy-4y+2y\right)\)

g) \(4xy+8xyz=4xy\left(1+2z\right)\)

19 tháng 10 2020

\(a,6x^3-9x^2=3x^2\left(2x-3\right)\)

\(b,4x^2y-8xy^2+10x^2y^2=2xy\left(2x-4y+5xy\right)\)

\(c,20x^2y-12x^3=4x^2\left(5y-3x\right)\)

\(d,4xy^2+8xyz=4xy\left(y+2z\right)\)

19 tháng 10 2020

\(6x^3-9x^2=3x^2\times\left(2x-3\right)\)

15 tháng 10 2018

a, 20x - 5y = 5(4x - y)
b, 4x2 - 8xy2 + 10x2y = 2x(2x - 4y2 + 5xy)
c, 5x (x - 1) - 3x (x - 1) = (5x - 3x) (x - 1) = 2x (x - 1)
d, x (x + y) - 6x - 6y = x (x + y) - (6x + 6y) = x (x + y) - 6 (x + y) = (x - 6) (x + y)
e, x4 - y4 = (x2)2 - (y2)2 = (x2 - y2) (x2 + y2) =
[(x + y) (x - y)] (x2 + y2)
f, x2 - 4y2 = x2 - (2y)2 = (x - 2y) (x + 2y)
g, 27x3 - 64 = (3x)3 - 43 = (3x - 4) (9x2 + 12x + 16)
h, (x +1)2 - 16 =
(x +1)2 - 42 = (x + 1 + 4) (x + 1 - 4) = (x + 5) (x - 3)
i, (3x + 1)2 - (x - 2)2 = (3x + 1 - x + 2) (3x + 1 + x - 2) = (2x + 3) ( 4x - 1)

16 tháng 11 2018

b.10x(x-y)-6y(y-x)=10x(x-y)+6y(x-y)=(10x+6y)(x-y)

16 tháng 11 2018

c.3x2+5y-3xy-5x=(3x2--3xy)-(5x-5y)=3x(x-y)-5(x-y)=(3x-5)(x-y)

30 tháng 10 2019

Ta có:

a) 6x2y - 3y2 - 2x2 + y = (6x2y - 2x2) - (3y2 - y) = 2x2(3y - 1) - y(3y - 1) = (2x2 - y)(3y - 1)

b)  2x2 + x - 4xy - 2y + 2x + 1 = (x2 + x) - (4xy + 2y) + (x2 + 2x + 1) = x(x + 1) - 2y(2x + 1) + (x + 1)2

 = (x + x + 1)(x + 1) - 2y(2x + 1) = (2x + 1)(x + 1) - 2y(2x + 1) = (2x + 1)(x + 1 - 2y)

c) 16x2y - 4xy2 - 4x3 + x2y = 4xy(4x - y) - x2(4x - y) = (4xy - x2)(4x - y)

d) 4x2 - 20x + 25 - 36y2 = (2x  - 5)2 - (6y)2 = (2x - 5 - 6y)(2x  - 5 + 6y)

e) x2 - 4y2 + 6x - 4y + 8 = (x2 + 6x + 9) - (4y2 + 4y + 1) = (x + 3)2 - (2y + 1)2 = (x + 3 - 2y - 1)(x + 3 + 2y + 1) = (x + 2 - 2y)(x + 4 + 2y)

30 tháng 10 2019

g) Ta có : x10 + x5 + 1

= (x10 - x) + (x5 - x2) + (x2 + x + 1)

= x(x9 - 1) + x2(x3 - 1) + (x2 + x + 1)

= x(x3 - 1)(x6 + x3 + 1) + x2(x3 - 1) + (x2 + x + 1)

= (x7 + x4 + x)(x - 1)(x2 + x + 1) + x2(x - 1)(x2 + x + 1) + (x2 + x + 1)

= (x2 + x + 1)(x8 - x7 + x 5 - x4 + x2 - x + x4 + x3 + x2 + 1)

= (x2 + x + 1)(x8 - x7 + x5 + x3 - x + 1)

h) TT trên (dài dòng ktl)

13 tháng 10 2018

1.a)\(20x-5y=5\left(4x-y\right)\)

b)\(5x\left(x-1\right)-3x\left(x-1\right)=\left(5x-3x\right)\left(x-1\right)=2x\left(x-1\right)\)

c)\(x\left(x+y\right)-6x-6y=x\left(x+y\right)-6\left(x+y\right)=\left(x-6\right)\left(x+y\right)\)

d)\(6x^3-9x^2=3x^2\left(2x-3\right)\)

e)\(4x^2y-8xy^2+10x^2y^2=2xy\left(2x-8y+10xy\right)\)

g)\(20x^2y-12x^3=4x^2\left(5y-3x\right)\)

h)\(8x^4+12x^2y-16x^3y^4=4x^2\left(2x^2+12y-16xy^4\right)\)

13 tháng 10 2018

2.a)\(3x\left(x+1\right)-5y\left(x+1\right)=\left(3x-5y\right)\left(x+1\right)\)

b)\(3x\left(x-6\right)-2\left(x-6\right)=\left(3x-2\right)\left(x-6\right)\)

c)\(4y\left(x-1\right)-\left(1-x\right)=4y\left(x-1\right)+\left(x-1\right)=\left(4y+1\right)\left(x-1\right)\)

d)\(\left(x-3\right)^3+3-x=\left(x-3\right)^3-\left(x-3\right)=\left(x-3\right)\left[\left(x-3\right)^2-1\right]=\left(x-3\right)\left(x-2\right)\left(x-4\right)\)

e)\(7x\left(x-y\right)-\left(y-x\right)=7x\left(x-y\right)+\left(x-y\right)=\left(7x+1\right)\left(x-y\right)\)

h)\(3x^3\left(2y-3z\right)-15x\left(2y-3z\right)^2=3x\left(2y-3z\right)\left[x^2-5\left(2y-3z\right)\right]\)

k)Sai đề: \(3x\left(z+2\right)+5\left(-z-2\right)=3x\left(z+2\right)-5\left(z+2\right)=\left(3x-5\right)\left(z+2\right)\)

l)\(18x^2\left(3+x\right)+3\left(x+3\right)=3\left(x+3\right)\left(6x^2+1\right)\)

m)\(14x^2y-21xy^2+28x^2y^2=7xy\left(2x-3y+4xy\right)\)

n)\(10x\left(x-y\right)-8y\left(y-x\right)=10x\left(x-y\right)+8y\left(x-y\right)=2\left(5x+4y\right)\left(x-y\right)\)

21 tháng 12 2016

a) 10x(x-y)-6y(y-x)=10x(x-y)+6y(x-y)=(10x+6y)(x-y)

b) \(x^2-25-2xy+y^2=x^2-2xy+y^2-25=\left(x-y\right)^2-25\)

\(=\left(x-y+5\right)\left(x-y-5\right)\)

c) \(x^2-5x+5y-y^2=\left(x^2-y^2\right)-\left(5x-5y\right)\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x+y-5\right)\left(x-y\right)\)

d)\(x^2+4x+3=x^2+x+3x+3=x\left(x+1\right)+3\left(x+1\right)\)\(=\left(x+3\right)\left(x+1\right)\)

e)\(x^2-4x-5=x^2-5x+x-5=x\left(x-5\right)+\left(x-5\right)\)\(=\left(x+1\right)\left(x-5\right)\)

21 tháng 12 2016

dễ quá

25 tháng 7 2017

Bài 1 : 

a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

b)  \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)

c)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

d)   \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)

BÀi 2 : 

a)   \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)

\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)

b)   \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)

c)  \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)

\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)

\(=\left(b+c-a\right)\left(d-c^2\right)\)

BÀi 3 : 

a)  \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)

b)  \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)

c)   \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)

d)   \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\)  \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)

17 tháng 7 2017

a) \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2\)

                  \(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)

                  \(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\)

b) sửa đề nhé!

\(6x-9-x^2=-\left(x^2-6x+9\right)\)

                       \(=-\left(x-3\right)^2\)