Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(4x^3-xy^2+y^3\right)\left(x^2y+2xy^2-2y^3\right)\)
\(=x^2y\left(4x^3-xy^2+y^3\right)+2xy^2\left(4x^3-xy^2+y^3\right)\)
\(-2y^3\left(4x^3-xy^2+y^3\right)\)
\(=4x^5y-x^3y^3+x^2y^4+8x^4y^2-2x^2y^4+2xy^5\)
\(-8x^3y^3+2xy^5-2y^6\)
\(=-2y^6+4x^5y+\left(2xy^5+2xy^5\right)+8x^4y^2+\left(x^2y^4-2x^2y^4\right)\)
\(-\left(x^3y^3+8x^3y^3\right)\)
\(=-2y^6+4x^5y+4xy^5+8x^4y^2-x^2y^4-9x^3y^3\)
b)
(!) \(2\left(x+y\right)^2-7\left(x+y\right)+5\)
\(=2\left(x+y\right)^2-2\left(x+y\right)-5\left(x+y\right)+5\)
\(=2\left(x+y\right)\left(x+y-1\right)-5\left(x+y-1\right)\)
\(=\left(2x+2y-5\right)\left(x+y-1\right)\)
(!!) \(\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-x^2-y^2-z^2\)
\(=2\left(xy+yz+zx\right)\)
1 ) \(a\left(m+n\right)+b\left(m+n\right)\)
\(=\left(a+b\right)\left(m+n\right)\)
2 ) \(a^2\left(x+y\right)-b^2\left(x+y\right)\)
\(=\left(a^2-b^2\right)\left(x+y\right)\)
\(=\left[\left(a-b\right).\left(a+3\right)\right]\left(x+y\right)\)
3 ) \(6a^2-3a+12ab\)
\(=3a.2a-3a+3a.4b\)
\(=3a.\left(2a-1+4b\right)\)
4 ) \(2x^2y^4-2x^4y^2+6x^3y^3\)
\(=2x^2y^2.y^2-2x^2y^2.x^2+2x^2y^2.3xy\)
\(=2x^2y^2\left(y^2-x^2+3xy\right)\)
5 ) \(\left(x+y\right)^3-x\left(x+y\right)^2\)
\(=\left(x+y\right)^2.\left(x+y-x\right)\)
\(=\left(x+y\right)^2.y\)
1)a(m+n)+b(m+n)
=(a+b)(m+n)
2)a2(x+y)-b2(x+y)
=(a2-b2)(x+y)
3)6a2-3a+12ab
=3a.2a-3a.(1-4b)
=3a.(2a-1+4b)
5)(x+y)3-x(x+y)2
=(x+y)(x+y)2-x(x+y)2
=(x+y)2(x+y-x)
Sửa đề chút :
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2+z^3-x^3-y^3-z^3\)
\(=x^3+3x^2y+3xy^2+y^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2-x^3-y^3\)
\(=3x^2y+3xy^2+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)
\(=3xy\left(x+y\right)+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
c) x3 + y3 + z3 - 3xyz
= x3 + 3x2y + 3xy2 + y3 + z3 - 3xyz - 3x2y - 3xy2
= (x+y)3 + z3 - 3xy.( z+x+y)
= (x+y+z).[(x+y)2 - (x+y).z + z2 ] - 3xy.(x+y+z)
= (x+y+z). ( x2 + 2xy + y2 - xz - yz + z2 - 3xy)
= (x+y+z) .(x2 + y2 + z2 - xy - xz -yz)
e) (a+b-c)2 - (a-c)2 - 2ab + 2bc
= (a+b-c - a+c).(a+b+c+a-c) - 2b.(a-c)
= b.(2a+b) - 2b.(a-c)
= b.(2a+b - a +c)
= b.( a+b+c)
xl bn nha! mk chỉ nghĩ đk 2 câu thoy, 1 câu bn kia làm r! 2 câu còn lại bn đợi người tiếp theo làm nhé
2. CMR:
a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
Ta có: VT=\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5=x^5-y^5=VP\)=> đpcm.
b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)
Ta có: VT=\(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5=VP\)
=> đpcm.
c. \(\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)
\(\Leftrightarrow x^2+bx+ax+ab=x^2+ax+bx+ab\) (đúng)
=> đpcm.
\(1,\left(x+2y-3\right)^2-4\left(x+2y-3\right)+4=\left(x+2y-3-2\right)^2=\left(x+2y-5\right)^2\)
\(2,\left(x-y\right)^3-1-3\left(x-y\right)\left(x-y-1\right)=\left(x-y-1\right)\text{[}\left(x-y\right)^2+x-y+1\text{]}-3\left(x-y\right)\left(x-y-1\right)=\left(x-y-1\right)\left(x^2+y^2+x-y+1-3x+3y\right)=\left(x-y-1\right)\left(x^2+y^2-2x+2y+1\right)\)
\(3,\left(x^2+y^2-17\right)^2-4\left(xy-4\right)^2=\left(x^2+y^2-17\right)-\left(2xy-8\right)^2=\left(x^2-2xy+y^2-9\right)\left(x^2+y^2+2xy-25\right)=\text{[}\left(x-y\right)^2-3^2\text{]}\text{[}\left(x+y\right)^2-5^2\text{]}=\left(x-y+3\right)\left(x-y-3\right)\left(x+y+5\right)\left(x+y-5\right)\)