Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(xy+1\right)^2-\left(x+y\right)^2\)
\(\left(xy+1-x-y\right)\left(xy+1+x+y\right)\)
a,\(x^2y-4y=y\left(x^2-4\right)=y\left(x-2\right)\left(x+2\right)\)
b,\(x^2-y^2-2x+1=\left(x^2-2x+1\right)-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-y+1\right)\left(x-y-1\right)\)
c,\(5x^2+5xy-x-y=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(5x-1\right)\left(x+y\right)\)
x2y - 4y = y( x2 - 4 ) = y( x - 2 )( x + 2 )
x2 - y2 - 2x + 1 = ( x2 - 2x + 1 ) - y2 = ( x - 1 )2 - y2 = ( x - 1 - y )( x - 1 + y )
5x2 + 5xy - x - y = ( 5x2 + 5xy ) - ( x + y ) = 5x( x + y ) - ( x + y ) = ( x + y )( 5x - 1 )
a: \(5x-20y=5\left(x-4y\right)\)
b: \(x^2+x^2y+x^2y^2=x^2\left(1+y+y^2\right)\)
c: \(x\left(x+y\right)-\left(5x+5y\right)=\left(x+y\right)\left(x-5\right)\)
d: \(5\left(x-y\right)+y\left(x-y\right)=\left(x-y\right)\left(y+5\right)\)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
Bài 1:
\(=3x^3y-6x^2y^2+15xy\)
Bài 2:
\(=\left(x+y\right)^2-25=\left(x+y+5\right)\left(x+y-5\right)\)
\(x^2+2xy-25+y^2\\ =\left(x^2+2xy+y^2\right)-5^2\\ =\left(x+y\right)^2-5^2\\ =\left(x+y-5\right)\left(x+y+5\right)\)
\(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)+y^2\left(z-y+y-x\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)+y^2\left(z-y\right)+y^2\left(y-x\right)+z^2\left(x-y\right)\)
\(=\left[x^2\left(y-z\right)-y^2\left(y-z\right)\right]+\left[y^2\left(y-x\right)-z^2\left(y-x\right)\right]\)
\(=\left(x^2-y^2\right)\left(y-z\right)+\left(y^2-z^2\right)\left(y-x\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(y-z\right)+\left(y-z\right)\left(y+z\right)\left(y-x\right)\)
\(=\left(x-y\right)\left(y-z\right)\left[\left(x+y\right)-\left(y+z\right)\right]\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
y^2 - ( x^2 - 2x + 1 )
⇔ y^2 - ( x - 1 )^2
⇔ ( y - x - 1 ) ( y + x - 1 )
nha bạn
( x + y )2 - 2( x + y ) + 1 =
= ( x + y - 1 )2 ( áp dụng hằng đẳng thức thứ bình phương 1 hiệu nha )
Hok tốt!!!!!!!!!!!!!!!!