\(xy+y^2-x-y\)          b.\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)

b: \(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)

\(=\left(x^2y^2-9\right)\left(x^2y^2-7\right)\)

\(=\left(xy-3\right)\left(xy+3\right)\left(x^2y^2-7\right)\)

c: \(=x^2-8x+x-8\)

\(=x\left(x-8\right)+\left(x-8\right)\)

\(=\left(x-8\right)\left(x+1\right)\)

9 tháng 10 2023

\(a,xy+y^2-x-y\)

\(=\left(xy+y^2\right)-\left(x+y\right)\)

\(=y\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(y-1\right)\)

\(---\)

\(b,\left(x^2y^2-8\right)^2-1\)

\(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)

\(=\left[\left(xy\right)^2-9\right]\left(x^2y^2-7\right)\)

\(=\left(xy-3\right)\left(xy+3\right)\left(x^2y^2-7\right)\)

\(---\)

\(c,x^2-7x-8\)

\(=x^2+x-8x-8\)

\(=\left(x^2+x\right)-\left(8x+8\right)\)

\(=x\left(x+1\right)-8\left(x+1\right)\)

\(=\left(x+1\right)\left(x-8\right)\)

\(Toru\)

12 tháng 8 2020

a) 3( x - y ) - 5x( y - x )

= 3( x - y ) - 5x[ -( x - y ) ]

= 3( x - y ) + 5x( x - y )

= ( 3 + 5x )( x - y )

b) x3 + 2x2y + xy2 - 9x

= x( x2 + 2xy + y2 - 9 )

= x[ ( x + y )2 - 32 ]

= x( x + y - 3 )( x + y + 3 )

c) 14x2y - 21xy2 + 28x2y2

= 7xy( 2x - 3y + 4xy )

12 tháng 8 2020

                                              Bài giải

\(a,\text{ }3\left(x-y\right)-5x\left(y-x\right)\)

\(=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(x-y\right)\left(3+5x\right)\)

\(b,\text{ }x^3+2x^2y+xy^2-9x\)

\(=x\left(x^2+2xy+y^2-9\right)\)

\(=x\left[\left(x+y\right)^2-3^2\right]\)

\(=x\left(x+y+3\right)\left(x+y-3\right)\)

\(c,\text{ }14x^2y-21xy^2+28x^2y\)

\(=7xy\left(2x-3y+4x\right)\)

\(=7xy\left(6x-3y\right)\)

3 tháng 8 2020

a,(x-y)^2-2(x+y)+1   b, x^2-y^2+4x+4         c, 4x^2-y^2+8(y-2)

=(x-y-1)^2                  =(x^2+4x+4)-y^2        =4x^2-y^2+8y-16

                                  =(x+2)^2-y^2              =4x^2-(y^2-8y+16)

                                  =(x+2-y)(x+2+y)         =4x^2-(y-4)^2

                                                                        

3 tháng 8 2020

a) (x+y)2-2(x+y)+1=(x+y-1)2

b) x2-y2+4x+4 = (x2+4x+4)-y2=(x+2)2-y2=(x+y+2)(x-y+2)

c)4x2-y2+8(y-2) = 4x2-(y2-8y+16) = (2x)2-(y-4)2=(2x+y-4)(2x-y+4)

d)x3-2x2+2x-4 = x2(x-2)+2(x-2) = (x-2)(x2+2)

e)xy-4+2x-2y=x(y+2) - 2(y+2) = (x-2)(y+2)

22 tháng 6 2018

b  \(x^8y^8+x^4y^4+1=x^8y^8+2x^4y^4+1-x^4y^4=\left(x^4y^4\right)^2+2x^4y^4+1-\left(x^2y^2\right)^2\)

\(=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2=\left(x^4y^4-x^2y^2+1\right)\left(x^4y^4+x^2y^2+1\right)\)

c  \(x^2y+xy^2+xz^2+x^2z+y^2z+yz^2+2xyz=\left(x^2y+x^2z+xyz+xy^2\right)+\left(xz^2+yz^2+xyz+y^2z\right)\)

\(=x\left(xy+xz+yz+y^2\right)+z\left(xz+yz+xy+y^2\right)=\left(x+z\right)\left(xy+xz+yz+y^2\right)\)

\(=\left(x+z\right)\left(x\left(y+z\right)+y\left(y+z\right)\right)=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)

a  \(3xyz+x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)=3xyz+xy^2+xz^2+x^2y+yz^2+x^2z+y^2z\)

\(=\left(x^2y+x^2z+xyz\right)+\left(xy^2+xyz+y^2z\right)+\left(xyz+xz^2+yz^2\right)\)

\(=x\left(xy+xz+yz\right)+y\left(xy+xz+yz\right)+z\left(xy+xz+yz\right)=\left(x+y+z\right)\left(xy+xz+yz\right)\)

29 tháng 6 2018

\(1\hept{\begin{cases}6x^2-8x+3x-4\\2x\left(3x-4\right)+\left(3x-4\right)\\\left(3x-4\right)\left(2x+1\right)\end{cases}}\)

\(2\hept{\begin{cases}7x^2-7xy-5x+5y+6xy\\7x\left(x-y\right)-5\left(x-y\right)+\frac{6xy\left(x-y\right)}{\left(x-y\right)}\\\left(x-y\right)\left(7x-5+\frac{6xy}{\left(x-y\right)}\right)\end{cases}}\)

\(3\hept{\begin{cases}5x\left(x-y\right)-15\left(x-y\right)\\\left(x-y\right)\left(5x-15\right)\end{cases}}\)

\(4,,2x^2+x=x\left(2x+1\right)\)

\(5\hept{\begin{cases}x^3-4x-3x^2+12\\x\left(x^2-4\right)-3\left(x^2-4\right)\\\left(x+2\right)\left(x-2\right)\left(x-3\right)\end{cases}}\)

\(6\hept{\begin{cases}2x+2y+x^2-y^2\\2\left(x+y\right)+\left(x+y\right)\left(x-y\right)\\\left(x+y\right)\left(2+x-y\right)\end{cases}}\)

\(7\hept{\begin{cases}\left(x^2y-2xy\right)-\left(xy-2y\right)+\left(xy-y\right)\\xy\left(x-2\right)-y\left(x-2\right)+y\left(x-1\right)\\y\left(X-2\right)\left(x-1\right)+y\left(x-1\right)\end{cases}}\Leftrightarrow y\left(x-1\right)\left(x-2+1\right)\)

\(8\hept{\begin{cases}x\left(2-y\right)+z\left(2-y\right)\\\left(2-y\right)\left(x+1\right)\end{cases}}\)

16 tháng 9 2018

\(2x^2+x\)

\(=x\left(2x+1\right)\)

.

hk 

tốt

2 tháng 8 2020

Bài làm:

a) \(x^6-6x^4+12x^2-8\)

\(=\left(x^2-2\right)^3\)

b) \(x^2+16-8x=\left(x-4\right)^2\)

c) \(10x-x^2-25=-\left(x-5\right)^2\)

d) \(9\left(a-b\right)^2-4\left(x-y\right)^2\)

\(=\left[3\left(a-b\right)\right]^2-\left[2\left(x-y\right)\right]^2\)

\(=\left(3a-3b-2x+2y\right)\left(3a-3b+2x-2y\right)\)

e) \(\left(x+y\right)^2-2xy+1\)

\(=x^2+2xy+y^2-2xy+1\)

\(=x^2+y^2+1\)

sai sai

2 tháng 8 2020

a.  \(x^6-6x^4+12x^2-8=\left(x^2\right)^3-3\left(x^2\right)^2.2+3x^22-2^3=\left(x^2-2\right)^3\)

b. \(x^2+16-8x=x^2-8x+4^2=\left(x-4\right)^2\)

c. \(10x-x^2-25=10x-x^2-5^2=-\left(x-5\right)^2\)

d. \(9\left(a-b\right)^2-4\left(x-y\right)^2=\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]\)

\(=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)=\left(x-5y\right)\left(5x-y\right)\)

e. \(\left(x+y\right)^2-2xy+1=x^2+2xy+y^2-2xy+1=x\left(x+2y\right)-y\left(y+2x\right)+2y^2+1\)

\(=x\left(x+y\right)-y\left(y+x\right)+xy-yx+2y^2+x=\left(x-y\right)\left(x+y\right)+2y^2+x\)