K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

a)  \(x^4+2x^3+5x^2+4x-12\)

\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)

\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)

27 tháng 10 2016

x4 + 2x3 + 5x2 + 4x -12=0

<=> x4 - x3 + 3x3 - 3x2 + 8x2 - 8x + 12x - 12 = 0

<=> ( x4 - x3 ) + ( 3x3 - 3x2 ) + ( 8x2 - 8x ) + ( 12x - 12 ) = 0

<=> ( x - 1 ) ( x3 + 3x2+ 8x +12) = 0
<=> ( x -1 ).[ ( x3 + 2x2 ) + ( x2 + 2x ) + ( 6x +1) ] = 0
<=>( x - 1). ( x + 2 ).( x2 + x + 6 ) = 0
<=> x = 1 hoặc x = -2

8 tháng 10 2017

x4+4x3+5x2+2x+1 = x(x3+4x2+5x+2)+1

8 tháng 10 2017

Bút danh XXX

19 tháng 8 2017

a)45+x3-5x2-9x

(45-9x)+(x3-5x2)

9(5-x)+x2(x-5)

(9-x2)(5-x)

(3-x)(3+x)(5-x)

b)x4-2x3-2x2-2x-3

x3(x-2)-2x(x-2)-3

(x-2)(x3-2x)-3

x

4 tháng 3 2021

a) \(4x^4+4x^3+5x^2+2x+1\)

\(x^2\left(4x^2+4x+5+\frac{4}{x}+\frac{1}{x^2}\right)\)

=\(x^2\left[\left(4x^2+\frac{1}{x^2}\right)+2\left(2x+\frac{1}{x}\right)+5\right]\)(1)

Đặt \(2x+\frac{1}{x}=a\)thì \(\left(2x+\frac{1}{x}\right)^2=a^2\)\(\Rightarrow4x^2+\frac{1}{x^2}=a^2-4\)

Thay vào (1), ta có:

\(x^2\left(a^2-4+2a+5\right)\)

=\(x^2\left(a^2+2a+1\right)\)

=\(x^2\left(a+1\right)^2\)

=\(\left[x\left(a+1\right)\right]^2\)

=\(\left[x\left(2x+\frac{1}{x}+1\right)\right]^2\)

=\(\left(2x^2+1+x\right)^2\)

\(=\left(2x^2+x+1\right)^2\)

3 tháng 3 2021

a) Đặt f(x) = 4x4 + 4x3 + 5x2 + 2x + 1

Sau khi phân tích thì đa thức có dạng ( 2x2 + ax + 1 )( 2x2 + bx + 1 )

=> f(x) = ( 2x2 + ax + 1 )( 2x2 + bx + 1 )

<=> f(x) = 4x4 + 2bx3 + 2x2 + 2ax3 + abx2 + ax + 2x2 + bx + 1

<=> f(x) = 4x4 + ( a + b )2x3 + ( ab + 4 )x2 + ( a + b )x + 1

Đồng nhất hệ số ta có : \(\hept{\begin{cases}a+b=2\\ab=1\end{cases}\Leftrightarrow}a=b=1\)

Vậy f(x) = 4x4 + 4x3 + 5x2 + 2x + 1 = ( 2x2 + x + 1 )2

b) 3x4 + 11x3 - 7x2 - 2x + 1

= 3x4 - x3 + 12x3 - 4x2 - 3x2 + x - 3x + 1

= x3( 3x - 1 ) + 4x2( 3x - 1 ) - x( 3x - 1 ) - ( 3x - 1 )

= ( 3x - 1 )( x3 + 4x2 - x - 1 )

8 tháng 8 2018

\(x^3+2x^2+2x+1=\left(x^3+1\right)+\left(2x^2+2x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

\(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)

\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

\(x^4+2x^3+2x^2+2x+1=x^4+x^2+2x^3+x^2+2x+1\)

\(=x^2\left(x^2+1\right)+2x\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+2x+1\right)\)

\(=\left(x^2+1\right)\left(x+1\right)^2\)

\(x^4-2x^3+2x-1=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1-2x\right)=\left(x^2-1\right)\left(x-1\right)^2\)

8 tháng 8 2018

\(x^3+2x^2+2x+1=\left(x^3+x^2\right)+\left(x^2+x\right)+\left(x+1\right)\)

                                    \(=x^2.\left(x+1\right)+x.\left(x+1\right)+\left(x+1\right)\)

                                   \(=\left(x+1\right).\left(x^2+x+1\right)\)

\(x^3-4x^2+12x-27\)

\(=\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(9x-27\right)\)

\(=x^2.\left(x-1\right)-3x.\left(x-1\right)+9.\left(x-3\right)\)

\(=\left(x-1\right).\left(x^2-3x\right)+9.\left(x-3\right)\)

\(=x.\left(x-1\right).\left(x-3\right)+9.\left(x-3\right)\)

\(=\left(x-3\right)\left[x.\left(x-1\right)+9\right]\)

15 tháng 12 2018

\(2x^3+x^2-4x-12=2x^3-4x^2+5x^2-10x+6x-12\)

\(=2x^2\left(x-2\right)+5x\left(x-2\right)+3\left(x-2\right)\)

\(=\left(x-2\right)\left(2x^2+5x+3\right)\)

\(=\left(x-2\right)\left[2x\left(x+1\right)+3\left(x+1\right)\right]\)

\(=\left(x-2\right)\left(x+1\right)\left(2x+3\right)\)

15 tháng 12 2018

Xin lỗi bạn, mình làm sai.

\(2x^3+x^2-4x-12=2x^2\left(x-2\right)+5x\left(x-2\right)+6\left(x-2\right)=\left(x-2\right)\left(2x^2+5x+6\right)\)

4 tháng 8 2017

a )\(x^2-2x-4y^2-4y=\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)\)

\(=\left(x-1\right)^2-\left(2y+1\right)^2=\left(x-2y-2\right)\left(x+2y\right)\)

b )\(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)

\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+2x+2\right)\left(x^2-2\right)\)

c ) \(x^2\left(1-x^2\right)-4-4x^2=x^2-x^4-4-4x^2\)

\(=x^2-\left(x^2+2\right)^2=\left(x-x^2-2\right)\left(x^2+x+2\right)\)

4 tháng 8 2017

a.x2-2x-4y2-4y=(x2-4y2)-(2x+4y)=(x-2y)(x+2y)-2(x+2y)=(x+2y)(x-2y-2)

b.x4+2x3-4x-4=(x4-4)+(2x3-4x)=(x2-2)(x2+2)+2x(x2-2)=(x2-2)(x2+2x+2)

c.x2(1-x2)-4-4x2= -x4-3x2-4=x2-(x4+4x2+4)=x2-(x2+2)2=(x-x2-2)(x+x2+2)