Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2-y2+6x+6y = (x2-y2)+(6x+6y) = (x-y)(x+y)+6(x+y) = (x-y-6)(x+y)
\(4\left(x+3y-4\right)^2-x^2+6x-9\)
\(=\left[2\left(x+3y-4\right)\right]^2-\left(x^2-6x+9\right)\)
\(=\left[2x+6y-8\right]^2-\left(x-3\right)^2\)
\(=\left(2x+6y-8+x-3\right)\left(2x+6y-8-x+3\right)\)
\(=\left(3x+6y-11\right)\left(x+6y-5\right)\)
\(=6x^2+9x+4x+6\)
\(=3x.\left(2x+3\right)+2.\left(2x+3\right)\)
\(=\left(2x+3\right).\left(3x+2\right)\)
\(\)
Phân tích đa thức thành nhân tử:
a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)
b) \(25-x^2+4xy-4y^2=25-\left(x^2-4xy+4y^2\right)=25-\left(x-2y\right)^2\)
\(=\left(5-x+2y\right)\left(5+x-2y\right)\)
Rút gọn biểu thức;
\(A=\left(6x+1\right)^2+\left(3x-1\right)^2-2\left(3x-1\right)\left(6x+1\right)\)
\(=\left[\left(6x+1\right)-\left(3x-1\right)\right]^2=\left(6x+1-3x+1\right)=\left(3x+2\right)^2\)
Tìm a để đa thức.. Bạn chia cột dọ thì da
\(xy+y^2-x-y=\left(xy+y^2\right)-\left(x+y\right)=y\left(x+y\right)-\left(x+y\right)=\left(y-1\right)\left(x+y\right)\)b)\(25-\left(x^2-4xy+4y^2\right)=5^2-\left(x-2y\right)^2=\left(x-2y+5\right)\left(5-x+2y\right)\)
\(x^4+x^3+2x^2+x+1\)
\(=\left(x^4+2x^2+1\right)+\left(x^3+x\right)\)
\(=\left(x^2+1\right)^2+x\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+1+x\right)\)
x^4+x^3+2x^2+x+1
=(x^4+2x^2+1)+(x^3+x)
=(x^2+1)^2+x(x^2+1)
=(x^2+1)(x^2+x+1)
Câu a trước đi ạ ^^
a) 7x - 6x2 - 2
= - 6x2 + 7x - 2
= (- 6x2 + 3x) + (4x - 2)
= 3x (- 2x + 1) + 2 (2x-1)
= - 3x ( 2x -1) + 2 (2x - 1)
= ( 2x -1 ) ( - 3x +2 )
\(x^3-6x^2+12x-8=0\Leftrightarrow\left(x-2\right)^3=0\Leftrightarrow x=2\)
\(16x^2-9\left(x+1\right)^2=0\Leftrightarrow7x^2-18x-9=0\)
\(\Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\)\(\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-3}{7}\end{cases}}\)
\(-27+27x-9x^2+x^3=0\Leftrightarrow\left(x-3\right)^3=0\Leftrightarrow x=3\)
\(x^4+6x^3+7x^2-6x+1\)
\(=x^4-2x^2+1+6x^3+9x^2-6x\)
\(=\left(x^2-1\right)^2+6x\left(x^2-1\right)+9x^2\)
\(=\left(x^2+3x-1\right)^2\)