Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(x^5-x^4-x^4+x^3+2x^3-2x^2-2x^2+2\)2x-2x+2\(x^4\left(x-1\right)-x^3\left(x-1\right)+2x^2\left(x-1\right)-2x\left(x-1\right)+2\left(x-1\right)\)
=\(\left(x^4-x^3+2x^2-2x+2\right)\left(x-1\right)\)
b,
Ta có : x^4+2017x^2+2016x+2017
=x^4+x^3-x^3+x^2-x^2+2017x^2+2017x-x+2017
=x^4+x^3+x^2-x^3-x^2-x+2017x^2+2017x+2017
=x^2(x^2+x+1)-x(x^2+x+1)+2017(x^2+x+1)
=(x^2+x+1)(x^2-x+2017)
Nhớ k mk nha
Ta có : x^4+2017x^2+2016x+2017
=x^4+x^3-x^3+x^2-x^2+2017x^2+2017x-x+2017
=x^4+x^3+x^2-x^3-x^2-x+2017x^2+2017x+2017
=x^2(x^2+x+1)-x(x^2+x+1)+2017(x^2+x+1)
=(x^2+x+1)(x^2-x+2017)
chúc cậu hok tốt _@
đa thức <=> x4-x+2017x^2+2017x+2017=x(x^3-1)+2017(x^2+x+1)=x(x-1)(x^2+x+1)+2017(x^2+x+1)=(x^2+x+1)(x^2-x+2017)
Ta có : x4 + 2018x2 + 2017x + 2018
= x4 - x + 2018x2 + 2018x + 2018
= x(x3 - 1) + 2018(x2 + x + 1)
= x(x - 1)(x2 + x + 1) + 2018(x2 + x + 1)
= (x2 + x + 1)(x2 - x + 2018)
bạn có: x^4 + 2016x^2 + 2015x + 2016
= x^4 + x^3 + x^2 - x^3 - x^2 - x + 2016x^2 + 2016x + 2016
= x^2(x^2 + x + 1) - x(x^2 + x + 1) + 2016(x^2 + x + 1)
= (x^2 + x + 1)(x^2 - x + 2016)
\(x^4+2016x^2+2015x+2016\)
=\(x^4+x^3+x^2+2015x^2+2015x+2015+1-x^3\)
=\(x^2\left(x^2+x+1\right)+2015\left(x^2+x+1\right)+\left(1-x\right)\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^2+2015+1-x\right)\)
=\(\left(x^2+x+1\right)\left(x^2-x+2016\right)\)
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
Đơn giản thôi :]>
Sau khi phân tích thì P(x) có dạng ( x2 + dx + 2 )( x2 + ax - 2 )
P(x) = x4 - x3 - 2x - 4 = ( x2 + dx + 2 )( x2 + ax - 2 )
⇔ x4 - x3 - 2x - 4 = x4 + ax3 - 2x2 + dx3 + adx2 - 2dx + 2x2 + 2ax - 4
⇔ x4 - x3 - 2x - 4 = x4 + ( a + d )x3 + adx2 + ( 2a - 2d )x - 4
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}a+d=-1\\ad=0\\2a-2d=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-1\\d=0\end{cases}}\)
( x2 + dx + 2 )( x2 + ax - 2 )
= ( x2 + 2 )( x2 - x - 2 )
= ( x2 + 2 )( x2 - 2x + x - 2 )
= ( x2 + 2 )[ x( x - 2 ) + ( x - 2 ) ]
= ( x2 + 2 )( x - 2 )( x + 1 )
=> P(x) = x4 - x3 - 2x - 4 = ( x2 + 2 )( x - 2 )( x + 1 )