K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

đặt t = x2+x

=>t2+3t +2 = (t+1)(t+2) 

 = (x2 +x +1)( x2 +x+2)

( lần đầu tiên mk thấy phân h nhân tử dạng này mà cũng hay)

27 tháng 10 2020

Đơn giản thôi :]>

Sau khi phân tích thì P(x) có dạng ( x2 + dx + 2 )( x2 + ax - 2 )

P(x) = x4 - x3 - 2x - 4 = ( x2 + dx + 2 )( x2 + ax - 2 )

⇔ x4 - x3 - 2x - 4 = x4 + ax3 - 2x2 + dx3 + adx2 - 2dx + 2x2 + 2ax - 4

⇔ x4 - x3 - 2x - 4 = x4 + ( a + d )x3 + adx2 + ( 2a - 2d )x - 4

Đồng nhất hệ số ta được : 

\(\hept{\begin{cases}a+d=-1\\ad=0\\2a-2d=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-1\\d=0\end{cases}}\)

( x2 + dx + 2 )( x2 + ax - 2 )

= ( x2 + 2 )( x2 - x - 2 )

= ( x2 + 2 )( x2 - 2x + x - 2 )

= ( x2 + 2 )[ x( x - 2 ) + ( x - 2 ) ]

= ( x2 + 2 )( x - 2 )( x + 1 )

=> P(x) = x4 - x3 - 2x - 4 = ( x2 + 2 )( x - 2 )( x + 1 )

27 tháng 12 2014

Ta có:\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2=3x^4+3x^2+3-x^4-x^2-1-2x^3-2x-2x^2\)

\(=2x^4-2x^3-2x+2=2x^3\left(x-1\right)-2\left(x-1\right)=2\left(x^3-1\right)\left(x-1\right)\)

\(=2\left(x-1\right)^2\left(x^2+x+1\right)\)

30 tháng 10 2018

       \(-x^4-x^3-2x^2+x-3\)

\(=-x^4-2x^3-3x^2+x^3+2x^2+3x-x^2-2x-3\)

\(=-x^2\left(x^2+2x+3\right)+x\left(x^2+2x+3\right)-\left(x^2+2x+3\right)\)

\(=\left(-x^2+x-1\right)\left(x^2+2x+3\right)\)

2 tháng 7 2015

x5-x4-x3-x2-x-2

=x5+x4+x3+x2+x-2x4-2x3-2x2-2x-2

=x(x4+x3+x2+x+1)-2(x4+x3+x2+x+1)

=(x4+x3+x2+x+1)(x-2)

10 tháng 10 2016

\(x^5-x^4-x^3-x^2-x-2\)

\(\text{Phân tích đa thức thành nhân tử :}\)

\(\left(x^4+x^3+x^2+x+1\right)\left(x-2\right)\)