Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= x^8 - x^7 + x^6 - x^5 + x^4 + x^7 - x^6 + x^5 - x^4 + x^3 + x^6 - x^5 + x^4 - x^3 + x^2 + x^5 - x^4 + x^3 - x^2 + x + x^4 - x^3 + x^2 - x + 1
= (x^8 - x^7 + x^6 - x^5 + x^4) + (x^7 - x^6 + x^5 - x^4 + x^3) + (x^6 - x^5 + x^4 - x^3 + x^2) + (x^5 - x^4 + x^3 - x^2 + x) + (x^4 - x^3 + x^2 - x + 1)
= x^4(x^4 - x^3 + x^2 - x + 1) + x^3(x^4 - x^3 + x^2 - x + 1) + x^2(x^4 - x^3 + x^2 - x + 1) + x(x^4 - x^3 + x^2 - x + 1) + (x^4 - x^3 + x^2 - x + 1)
= (x^4 + x^3 + x^2 + x + 1)(x^4 - x^3 + x^2 - x + 1)
2222222222222222222222222222222222222222222222222222222222223333333
Đặt \(a=x^2+x+1\)\(\Rightarrow\)\(a+1=x^2+x+2\)
Ta có: \(\left(x^2+x+1\right)\left(x^2+x+2\right)-6=a.\left(a+1\right)-6\)
\(=a^2+a-6\)
\(=\left(a^2-2a\right)+\left(3a-6\right)\)
\(=a.\left(a-2\right)+3\left(a-2\right)\)
\(=\left(a+3\right).\left(a-2\right)\)
\(=\left(x^2+x+1+3\right).\left(x^2+x+1-2\right)\)
\(=\left(x^2+x+4\right)\left(x^2+x-1\right)\)
Chúc bn hok tốt
( x2 + x + 1 )( x2 + x + 2 ) - 6 (*)
Đặt x2 + x + 1 = t
(*) = t( t + 1 ) - 6
= t2 + t - 6
= t2 - 2t + 3t - 6
= t( t - 2 ) + 3( t - 2 )
= ( t - 2 )( t + 3 )
= ( x2 + x + 1 - 2 )( x2 + x + 1 + 3 )
= ( x2 + x - 1 )( x2 + x + 4 )
Đặt \(x^2-2x=a\) thì \(x^2-2x-1=a-1\)
Ta có: \(\left(x^2-2x\right)\left(x^2-2x-1\right)-6\)
\(=a\left(a-1\right)-6\)
\(=a^2-a-6\)
\(=a^2-3a+2a-6\)
\(=a\left(a-3\right)+2\left(a-3\right)\)
\(=\left(a+2\right)\left(a-3\right)\)
\(=\left(x^2-2x+2\right)\left(x^2-2x-3\right)\)
Cho mình hỏi: Bạn đã biết làm những bài bạn gửi chưa?
2 bài mình mới đăng là mh chỉ để lưu lại, lúc khác làm thôi, dù sao cx cảm ơn bạn
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
a) \([(x-y)3 + (y-z)3]+ (z-x)3\)=\(\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)
\(=\left(x-z\right)\left[\left(\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right)\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]=\left(x-z\right)\left[\left(x-2y+z\right)\left(x+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)=\left(x-z\right)\left(x-y\right)\left(z-y\right)3\)
b) \(=y^2\left(x^2y-x^3+z^3-z^2y\right)-z^2x^2\left(z-x\right)=y^2\left[-y\left(z^2-x^2\right)-\left(z^3-x^3\right)\right]-z^2x^2\left(z-x\right)\)
\(=y^2\left(z-x\right)\left(-yz-xy-z^2-zx-x^2\right)-z^2x^2\left(z-x\right)=\left(z-x\right)\left(-y^3z-xy^2-z^2y^2-xyz-x^2y^2-z^2x^2\right)\)
đến đây coi như là thành nhân tử rồi nha. em muốn gọn thì ráng ngồi nghĩ rồi tách nha. chỉ cần nhóm mấy cái có ngoặc giống nhau là đc. k khó đâu. chịu khó nghĩ để rèn luyện nha
c) \(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)
\(\left(9a^3-6a^2\right)+\left(6a^2-4a\right)+\left(-9a+6\right)=3a^2\left(3a-2\right)+2a\left(3a-2\right)-3\left(3a-2\right)=\left(3a-2\right)\left(3a^2+2a-3\right)\)
d) em sửa đề đi. đề sai rồi. đồng nhất hệ số phải có dấu bằng nha.
có gì liên hệ chị. đúng nha ;)
Đặt x^2 + x + x = t
Ta có BT : \(t\left(t+1\right)-1^2=t^2+t-1\):)) đề lỗi j ko ?
\(x^2\left(x+1\right)^2+x^2+\left(x+1\right)^2\)
\(=\left(x^2+1\right)\left(x+1\right)^2+x^2+1-1\)
\(=\left(x^2+1\right)\left[\left(x+1\right)^2+1\right]-1\)
\(=\left(x^2+1\right)\left(x^2+1+2x+1\right)-1\)
\(=\left(x^2+1\right)^2+2x\left(x^2+1\right)+x^2+1-1\)
\(=\left(x^2+1\right)^2+2x\left(x^2+1\right)+x^2\)
\(=\left(x^2+1+x\right)^2\)
Đặt x^2 + x = t
Thay vào ta có đa thức mới :
t. ( t + 1 ) - 6
= t^2 + t - 6
= t^2 + 2t - 3t - 6
= t.(t+2 ) - 3 .(t+2)
= ( t - 3 )(t + 2 )
Thay t = x^2 + x ta có :
= ( x^2 + x - 3 )(x^2 + x + 2 )