Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^4+4x^3-x^2-x\)
\(=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=\left(x+1\right)\left(4x^3-x\right)\)
\(=x\left(x+1\right)\left(4x^2-1\right)\)
\(=x\left(x+1\right)\left[\left(2x\right)^2-1\right]\)
\(=x\left(x+1\right)\left(2x+1\right)\left(2x-1\right)\)
(Nhớ k cho mình với nhá!)
\(x^3+4x^2+4x+1\)
\(=x^3+3x^2+x+x^2+3x+1\)
\(=x\left(x^2+3x+1\right)+\left(x^2+3x+1\right)\)
\(=\left(x+1\right)\left(x^2+3x+1\right)\)
A,
x^2 - y^2 -2x -2y
= (x^2 - y^2) -(2x +2y)
= (x+y)(x-y) -2(x+y)
= (x+y)(x-y-2)
B,
5x^6 - 320
=5(x^6 - 64)
=5( (x^3)^2 - 8^2)
= 5( x^3 - 8)(x^3+8)
=5(x-2)(x^2 + 2x+4)(x+2)(x^2-2x-4)
\(x^4+4x^3+2x^2-4x+1\)
\(=x^4+2x^3-x^2+2x^3+4x^2-2x-x^2-2x+1\)
\(=x^2\left(x^2+2x-1\right)+2x\left(x^2+2x-1\right)-\left(x^2+2x-1\right)\)
\(=\left(x^2+2x-1\right)^2\)
\(x^3-4x^2-xy^2+4x\)
\(=x\left(x^2-4x-y^2+4\right)\)
\(=x\left(\left(x-2\right)^2-y^2\right)\)
\(=x\left(x-2-y\right)\left(x-2+y\right)\)
x3−4x2−xy2+4xx3−4x2−xy2+4x
=x(x2−4x−y2+4)=x(x2−4x−y2+4)
=x((x−2)2−y2)=x((x−2)2−y2)
=x(x−2−y)(x−2+y)
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
#)Giải :
\(x^3-2x-4\)
\(=x^3+2x^2-2x^2+2x-4x-4\)
\(=x^3+2x^2+2x-2x^2-4x-4\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^4+2x^3+5x^2+4x-12\)
\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)
\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
Câu 1.
Đoán được nghiệm là 2.Ta giải như sau:
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^3+2x^2+4x+3=\left(x^3+x^2\right)+\left(x^2+x\right)+\left(3x+3\right)\\ \)
\(=x^2.\left(x+1\right)+x.\left(x+1\right)+3.\left(x+1\right)=\left(x+1\right).\left(x^2+x+3\right)\)
(x+3)(x2+x+1)