K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

x8+3x4+4 =x8+4x4+4-x4

=(x4-2)2-x4

=(x4-x2-2)(x4+x2-2)

=(x4-2x2+x2-2)(x4-x2+2x2-2)

=(x2-2)(x2+1)(x2-1)(x2+2)

=(x-1)(x+1)(x2-2)(x2+1)(x2+2)

20 tháng 7 2016

\(x^8+3x^4+4\)

\(=x^8+4x^4+4-x^4\)

\(=\left(x^4-2\right)^2-x^4\)

\(=\left(x^4-x^2-2\right)\left(x^4-x^2-2x^2-2\right)\)

\(=\left(x^2-2\right)\left(x^2+1\right)\left(x^2-1\right)\left(x^2+2\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2-2\right)\left(x^2+1\right)\left(x^2+2\right)\)

20 tháng 7 2016

x8+3x4+4=(x8+4x4+4)-x4=(x4+2)2-x4=(x4+2-x2)(x4+2+x2)

3 tháng 7 2019

\(x^8+3x^4+4\)

\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)

\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)

\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)

3 tháng 7 2019

\(4x^4+4x^3+5x^2+2x+1\)

\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)

\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)

\(=\left(2x^2+x+1\right)^2\)

15 tháng 11 2016

\(2x^4+3x^3-7x^2-6x+8\)

\(=2x^4+5x^3-2x^2-8x-2x^3-5x^2+2x+8\)

\(=x\left(2x^3+5x^2-2x-8\right)-\left(2x^3+5x^2-2x-8\right)\)

\(=\left(x-1\right)\left(2x^3+5x^2-2x-8\right)\)

\(=\left(x-1\right)\left(2x^3+x^2-4x+4x^2+2x-8\right)\)

\(=\left(x-1\right)\left[x\left(2x^2+x-4\right)+2\left(2x^2+x-4\right)\right]\)

\(=\left(x-1\right)\left(x+2\right)\left(2x^2+x-4\right)\)

15 tháng 11 2016

vuivui cảm ơn

 

23 tháng 6 2017

\(x^8+3x^4+1\)

\(=\left(x^4\right)^2+2x^4.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{5}{4}\)

\(=\left(x^4+\frac{3}{2}\right)^2-\left(\sqrt{\frac{5}{4}}\right)^2\)

\(=\left(x^4+\frac{3}{2}-\sqrt{\frac{5}{4}}\right)\left(x^4+\frac{3}{2}+\sqrt{\frac{5}{4}}\right)\)

Nhận lời thách đố

23 tháng 6 2017

\(=x^8+\frac{6}{2}x^4+1\)

\(=x^8+\frac{3+\sqrt{5}+3-\sqrt{5}}{2}x^4+\frac{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}\)

\(=x^8+\frac{x^4.\left(3+\sqrt{5}\right)}{2}+\frac{x^4\left(3-\sqrt{5}\right)}{2}+\left(\frac{3+\sqrt{5}}{2}\right)\left(\frac{3-\sqrt{5}}{2}\right)\)

\(=x^4\left(x^4+\frac{3+\sqrt{5}}{2}\right)+\frac{3-\sqrt{5}}{2}\left(x^4+\frac{3+\sqrt{5}}{2}\right)\)

\(=\left(x^4+\frac{3-\sqrt{5}}{2}\right)\left(x^4+\frac{3+\sqrt{5}}{2}\right)\)

Nếu thấy đúng nhớ tk nha

7 tháng 10 2018

       \(x^4+3x^2-4\)

\(=x^4+4x^2-x^2-4\)

\(=x^2\left(x^2+4\right)-\left(x^2+4\right)\)

\(=\left(x^2+4\right)\left(x^2-1\right)\)

\(=\left(x^2+4\right)\left(x-1\right)\left(x+1\right)\)

Chúc bạn học tốt.

6 tháng 10 2016

x\(x^4+3x^4+4=\left(x^2\right)^2+2x^2\times\frac{3}{2}+\frac{9}{4}\)

7 tháng 7 2017

\(x^8y^8+x^4y^4+1=\left[\left(x^4y^4\right)^2+2x^4y^4+1\right]-x^4y^4=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2\)

\(=\left(x^4y^4+1-x^2y^2\right)\left(x^4y^4+1+x^2y^2\right)\)

\(=\left(x^4y^4+1-x^2y^2\right)\left[\left(x^2y^2\right)^2+2x^2y^2+1-x^2y^2\right]\)

\(=\left(x^4y^4+1-x^2y^2\right)\left[\left(x^2y^2+1\right)^2-\left(xy\right)^2\right]\)

\(=\left(x^4y^4+1-x^2y^2\right)\left(x^2y^2+1-xy\right)\left(x^2y^2+1+xy\right)\)

29 tháng 10 2017

Phân tích đa thức thành nhân tử

x3+3x2y9xy2+5y2

x8y8+x4y4+1

21 tháng 8 2016

(x-1)(x+2)2

7 tháng 11 2019

\(-\left(3x^4-x^3-1\right)\)