K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

phần 1 đề nhầm ak sửu lại nha:

\(\left(8x^3+1\right):\left(4x^2-2x+1\right)=\left(2x+1\right)\left(4x^2-2x+1\right):\left(4x^2-2x+1\right)=2x+1\)

2) \(x^2-y^2-6x+6y\)

\(=\left(x-y\right)\left(x+y\right)-6\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-6\right)\)

19 tháng 10 2016

a) \(\left(8x^3+1\right):\left(4x^2-2x+1\right)\)

 

11 tháng 10 2020

Ta có: \(3x^2\left(y-x\right)+6x^2\left(x-y\right)^2\)

\(=3x^2\left(y-x\right)+6x^2\left(y-x\right)^2\)

\(=3x^2\left(y-x\right)\left[1-2\left(y-x\right)\right]\)

\(=3x^2\left(y-x\right)\left(2x-2y+1\right)\)

11 tháng 10 2020

3x2( y - x ) + 6x2( x - y )2

= 3x2( y - x ) + 6x2( y - x )2

= 3x2( y - x )[ 1 + 2( y - x ) ]

= 3x2( y - x )( 2y - 2x + 1 )

22 tháng 10 2019

Bài 1:

\(6x^2-2\left(x-y\right)^2-6y^2\)

\(=6\left(x-y\right)\left(x+1\right)-2\left(x-y\right)^2\)

\(=2\left(x-y\right)\left(3x+3-x+y\right)\)

\(=2\left(x-y\right)\left(2x+3+y\right)\)

Bài 2:

\(P=\left(3x-1\right)^2+2\left(3x-1\right)\left(x+1\right)+\left(x+1\right)^2\)

\(=\left(3x-1-x-1\right)^2\)

\(=\left(2x-2\right)^2\)(1)

b) Thay \(x=\frac{9}{4}\)vào (1) ta được: 

\(\left(2.\frac{9}{4}-2\right)^2\)

\(=\frac{25}{4}\)

Vậy giá trị của P \(=\frac{25}{4}\)khi \(x=\frac{9}{4}\)

Bài 3:

Ta có: \(M=x^2+4x+5\)

\(=\left(x+2\right)^2+1\)

Vì \(\left(x+2\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x+2\right)^2+1\ge0+1;\forall x\)

Hay \(M\ge1;\forall x\)

Dấu"="xảy ra \(\Leftrightarrow\left(x+2\right)^2=0\)

                       \(\Leftrightarrow x=-2\)

Vậy \(M_{min}=1\Leftrightarrow x=-2\)

22 tháng 10 2019

Bài 1 : trên là sai nha mình làm lại

\(6x^2-2\left(x-y\right)^2-6y^2\)

\(=6\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=2\left(x-y\right)\left(3x+3y-x+y\right)\)

\(=2\left(x-y\right)\left(2x+4y\right)\)

\(=4\left(x-y\right)\left(x+2y\right)\)

13 tháng 8 2016

bạn giải rồi thi

13 tháng 8 2016

bạn giải luôn rồi mà. Nhưng kết quả thì đúng đó

17 tháng 10 2018

\(10\left(x-y\right)-8y\left(y-x\right)\)

\(=10\left(x-y\right)+8y\left(x-y\right)\)

\(=\left(x-y\right)\left(10+8y\right)\)

\(=2\left(x-y\right)\left(5+4y\right)\)

17 tháng 10 2018

a) 10(x-y)-8y(y-x)= 10(x-y)+8y(x-y) = (x-y)(10+8y)=2(x-y)(5+4y)

b) Bạn xem lại đầu bài nhé !

3 tháng 9 2018

Đặt: \(x^2-6x+1=a;x^2+1=b\)

Khi đó đa thức này có dạng:

\(2a^2+5ab+2b^2=2a^2+4ab+ab+2b^2\)

\(=2a\left(a+2b\right)+b\left(a+2b\right)=\left(a+2b\right)\left(2a+b\right)\)

Thay lại a và b thì được:

\(\left(a+2b\right)\left(2a+b\right)=\left(x^2-6x+1+2x^2+2\right)\left(2x^2-12x+2+x^2+1\right)\)

\(=\left(3x^2-6x+3\right)\left(3x^2-12x+3\right)\)

\(=9\left(x-1\right)^2\left(x^2-4x+1\right)\)

Vậy ...

6 tháng 1 2018

Ta có (6x+5)2(3x+2)(x+1)-35

= (36x2+60x+25)(3x2+5x+2)-35 (1)

Đặt a=3x2+5x+2

=> 12a+1= 12(3x2+5x+2)+1 =36x2+60x+25

Thay a=3x2+5x+2 vào (1) ta được

(12a+1).a-35=12a2+a-35

= 12a2-20a+21a-35

= 4a(3a-5)+7(3a-5)

= (3a-5)(4a+7) (2)

Thay 3x2+5x+2=a vào (2) ta được

(9x2+15x+6-5)(12x2+20x+8+7)

= (9x2+15x+1)(12x2+20x+15)

Ta có: \(\left(6x+5\right)^2\left(3x+2\right)\left(x+1\right)-35\)

\(=\left(36x^2+60x+25\right)\left(3x^2+5x+2\right)-35\)(1)

Đặt \(3x^2+5x+2=y\)

\(\left(1\right)=\left(12y+1\right)y-35\)

\(=12y^2+y-35\)

\(=\left(3y-5\right)\left(4y+7\right)\)

\(=\left(9x^2+15x+1\right)\left(12x^2+20x+15\right)\)

10 tháng 10 2020

a) \(3^2\left(y-x\right)+6x^2\left(x-y\right)^2\)

\(=3\left(y-x\right)\left[3+2x^2\left(y-x\right)\right]\)

\(=3\left(y-x\right)\left(3+2x^2y-2x^3\right)\)

b) \(x^4-3x^3+3x-1\)

\(=\left(x^4+x^3\right)-\left(4x^3+4x^2\right)+\left(4x^2+4x\right)-\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3-4x^2+4x-1\right)\)

\(=\left(x+1\right)\left[\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(x-1\right)\right]\)

\(=\left(x+1\right)\left(x-1\right)\left(x^2-3x+1\right)\)