Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow ab^2-ac^2+bc^2-ba^2+ca^2-cb^2\)
\(\Leftrightarrow a\left(b^2-c^2-ab+ac\right)+bc^2-b^2c\)
\(\Leftrightarrow a[\left(b-c\right)\left(b+c\right)-a\left(b-c\right)]-bc\left(b-c\right)\)
\(\Leftrightarrow a\left(b-c\right)\left(b+c-a\right)-bc\left(b-c\right)\)
\(\Leftrightarrow\left(b-c\right)\left(ab+ac-a^2-bc\right)\)
\(\Leftrightarrow\left(b-c\right)[a\left(b-a\right)-c\left(b-a\right)]\)
\(\Leftrightarrow\left(b-c\right)\left(a-c\right)\left(b-a\right)\)
\(a\left(b^2+c^2+bc\right)+b\left(c^2+a^2+ca\right)+c\left(a^2+b^2+ab\right)\)
\(=ab^2+ac^2+bc^2+ba^2+ca^2+cb^2+3abc\)
\(=\left(ab^2+ba^2+abc\right)+\left(bc^2+cb^2+abc\right)+\left(ca^2+ac^2+abc\right)\)
\(=ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)
a: Sửa đề: \(a^2\left(a+1\right)+b^2\left(b-1\right)-a^2b^2\left(a+b\right)\)
\(=a^3+a^2+b^3-b^2-a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a+b\right)-a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2+a-b-a^2b^2\right)\)
b: \(=a^m\cdot a^3+2\cdot a^m\cdot a^2+a^m\)
\(=a^m\left(a^3+2a^2+1\right)\)
\(ĐKXĐ:x\ne\pm\frac{3}{2};x\ne1;x\ne0\)
\(A=\left(\frac{2+3x}{2-3x}-\frac{36x^2}{9x^2-4}-\frac{2-3x}{2+3x}\right):\frac{x^2-x}{2x^2-3x^3}\)
\(=\left[\frac{\left(2+3x\right)^2}{\left(2+3x\right)\left(2-3x\right)}+\frac{36x^2}{\left(2-3x\right)\left(2+3x\right)}-\frac{\left(2-3x\right)^2}{\left(2-3x\right)\left(2+3x\right)}\right]:\frac{x\left(x-1\right)}{x^2\left(2-3x\right)}\)
\(=\frac{4+12x+9x^2+36x^2-4+12x-9x^2}{\left(2+3x\right)\left(2-3x\right)}\cdot\frac{x\left(2-3x\right)}{x-1}\)
\(=\frac{36x^2+24x}{\left(2+3x\right)\left(2-3x\right)}\cdot\frac{x\left(2-3x\right)}{x-1}\)
\(=\frac{12x\left(3x+2\right)}{2+3x}\cdot\frac{x}{x-1}\)
\(=\frac{12x^2}{x-1}\)
Để A nguyên dương hay \(\frac{12x^2}{x-1}\) nguyên dương
Mà \(12x^2\ge0\Rightarrow x-1>0\Rightarrow x>1\)
Vậy để A nguyên dương thì x là số nguyên dương lớn hơn 1.
3a2c2 + bd + 3abc + acd
= 3ac(ac + b) + d(ac + b)
= (ac + b)(3ac + d)
ab(a + b) - bc(a + c) + abc
= b(a2 + ab - ac - c2 + ac)
= b(a2 + ab - c2)
a(b2 + c2) + b(c2 + a2) + c(a2 + b2) + 2abc
= ab2 + ac2 + bc2 + a2b + c(a2 + 2ab + b2)
= c2(a + b) + ab(a + b) + c(a + b)2
= (a + b)(c2 + ab + ac + bc)
= (a + b)[c(b + c) + a(b + c)]
= (a + b)(a + c)(b + c)
bc(b + c) + ac(c - a) - ab(a + b)
= bc(b + c) + ac[(b + c) - (a + b)] - ab(a + b)
= bc(b + c) + ac(b + c) - ac(a + b) - ab(a + b)
= c(b + c)(a + b) - a(a + b)(b + c)
= (a + b)(b + c)(c - a)
\(a\left(b+c\right)\left(b^2-c^2\right)+b\left(a+c\right)\left(c^2-a^2\right)+c\left(a+b\right)\left(a^2-b^2\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)