K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 3 2019

Bài này ko thể phân tích theo kiểu lớp 8 được (chưa học căn thức)

\(2x^2-6x+1=\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\frac{3\sqrt{2}}{2}+\left(\frac{3\sqrt{2}}{2}\right)^2-\frac{7}{2}\)

\(=\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}\right)^2-\left(\frac{\sqrt{14}}{2}\right)^2\)

\(=\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}+\frac{\sqrt{14}}{2}\right)\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}-\frac{\sqrt{14}}{2}\right)\)

\(=\left(\sqrt{2}x+\frac{\sqrt{14}-3\sqrt{2}}{2}\right)\left(\sqrt{2}x-\frac{\sqrt{14}+3\sqrt{2}}{2}\right)\)

7 tháng 3 2019

\(2x^2-6x+1=2\left(x^2-3x+\frac{9}{4}-\frac{7}{4}\right)=2\left[\left(x-\frac{3}{2}\right)^2-\left(\frac{\sqrt{7}}{2}\right)^2\right]=2\left(x-\frac{3}{2}-\frac{\sqrt{7}}{2}\right)\left(x-\frac{3}{2}+\frac{\sqrt{7}}{2}\right)\)

\(=2\left(x-\frac{3+\sqrt{7}}{2}\right)\left(x-\frac{3-\sqrt{7}}{2}\right)\)

\(B=x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1\)

\(=\left(x^2+3x-1\right)^2\)

25 tháng 9 2017

\(=6x^2-2x-\left(9x-3\right)\)

\(=2x\left(3x-1\right)-3\left(3x-1\right)\)

\(=\left(2x-3\right)\left(3x-1\right)\)

25 tháng 9 2017

6x2 - 11x + 3

= 2x(3x - 1) - 3(3x - 1)

= (3x - 1)(2x - 3)

9 tháng 10 2019

\(=\left(2x+1\right)^2+2\left(2x+1\right)=\left(2x+1\right)\left(2x+1+2\right)=\left(2x+1\right)\left(2x+3\right)\)

\(\)

10 tháng 12 2016

\(=\left(\sqrt{2}x+2\right)\left(\sqrt{2}x-2\right)\)

12 tháng 9 2015

Viết đề rõ chút chứ nhìn ko ra

21 tháng 11 2016

\(2x^2-5x-7\)

\(=2x^2+2x-7x-7\)

\(=2x\left(x+1\right)-7\left(x+1\right)\)

\(=\left(2x-7\right)\left(x+1\right)\)

Vậy ...

21 tháng 11 2016

cau gioi nhi minh lam quen nhe

8 tháng 1 2018

$ 2x^3 - x^2 + 5x + 3 \\ = 2x^3 + x^2 - 2x^2 - x + 6x + 3 \\ = x^2(2x + 1) - x(2x + 1) + 3(2x + 1) \\ = (2x + 1)(x^2 - x + 3) $

8 tháng 1 2018

\(2x^3-x^2+5x+3\)

= \(2x^3+x^2-2x^2-x+6x+3\)

\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)

\(=\left(2x+1\right)\left(x^2-x+3\right)\)

\(x^2-x+3=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}+3>0\)

Nên ​​

\(2x^3-x^2+5x+3=\left(2x+1\right)\left(x^2-x+3\right)\)