K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

\(=x^4+1999x^2-x+1999x+1999\)

\(=\left(x^4-x\right)+\left(1999x^2+1999x+1999\right)\)

\(=x\left(x^3-1\right)+1999\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+1999\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+1999\right)\)

22 tháng 10 2019

Phân tích đa thức thành nhân tử:

b, 20x4-5

= 5(4x4-1)

=5(2x2-1)(2x2+1)

học tốt

3 tháng 7 2019

\(x^8+3x^4+4\)

\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)

\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)

\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)

3 tháng 7 2019

\(4x^4+4x^3+5x^2+2x+1\)

\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)

\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)

\(=\left(2x^2+x+1\right)^2\)

27 tháng 10 2020

Đơn giản thôi :]>

Sau khi phân tích thì P(x) có dạng ( x2 + dx + 2 )( x2 + ax - 2 )

P(x) = x4 - x3 - 2x - 4 = ( x2 + dx + 2 )( x2 + ax - 2 )

⇔ x4 - x3 - 2x - 4 = x4 + ax3 - 2x2 + dx3 + adx2 - 2dx + 2x2 + 2ax - 4

⇔ x4 - x3 - 2x - 4 = x4 + ( a + d )x3 + adx2 + ( 2a - 2d )x - 4

Đồng nhất hệ số ta được : 

\(\hept{\begin{cases}a+d=-1\\ad=0\\2a-2d=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-1\\d=0\end{cases}}\)

( x2 + dx + 2 )( x2 + ax - 2 )

= ( x2 + 2 )( x2 - x - 2 )

= ( x2 + 2 )( x2 - 2x + x - 2 )

= ( x2 + 2 )[ x( x - 2 ) + ( x - 2 ) ]

= ( x2 + 2 )( x - 2 )( x + 1 )

=> P(x) = x4 - x3 - 2x - 4 = ( x2 + 2 )( x - 2 )( x + 1 )

18 tháng 8 2017

\(x^2\left(x^2+4x\right)-\left(x^2-4\right)\)

\(=x^4+4x^2-x^2+4\)

\(=\left(x^2+2\right)-x^2\)

\(=\left(x^2+2+x\right)\left(x^2+2-x\right)\)

10 tháng 10 2015

x4 + 3x2 +4 

= x4 + 4x2 + 4 - x2

= ( x2 + 2 )2 - x2= ( x

= ( x2 - x + 2) * ( x2 + x + 2)

 Không biết có đúng không ...

13 tháng 12 2019

\(x^4+x^2y^2+y^4\)

\(=x^4+2x^2y^2+y^4-x^2y^2\)

\(=\left(x^2+y^2\right)^2-\left(xy\right)^2\)

\(=\left(x^2+y^2+xy\right)\left(x^2+y^2-xy\right)\)

8 tháng 9 2019

\(x^2-y^2+4x+4\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2+y\right)\left(x+2-y\right)\)

\(4x^2-y^2+8\left(y-2\right)\)

\(=4x^2-\left(y^2-8y+16\right)\)

\(=4x^2-\left(y-4\right)^2\)

\(=\left(2x+y-4\right)\left(2x-y+4\right)\)