Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^7 + x^5 + 1
=x^7-x^6+x^5-x^3+x^2+x^6-x^5+x^4-x^2+x+x^5-x^4+x^3-x+1
=(x^2+x+1)(x^5-x^4+x^3-x+1)
+x^4 - 6x^3 + 12x^2 - 14x + 3
=x^4-2x^3+3x^2-4x^3-6x^2-12x+x^2-2x+3
=(x^2-4x+1)(x^2-2x+3)
Lời giải:
$x^5+x-1=(x^5+x^2)-(x^2-x+1)$
$=x^2(x^3+1)-(x^2-x+1)=x^2(x+1)(x^2-x+1)-(x^2-x+1)$
$=(x^2-x+1)[x^2(x+1)-1]=(x^2-x+1)(x^3+x^2-1)$
b)\(x^2-x-12\)
\(=x^2+3x-4x-12\)
\(=x\left(x+3\right)-4\left(x+3\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
c sai đề
(4x+1)(12x-1)(3x+2)(x+1)=4
<=> [(4x+1)(3x+2)].[(12x-1)(x+1)]=4
<=>(12x^2+11x+2)(12x^2+11x-1)=4
Đặt 12x^2+11x+2=t thì 12x^2+11x-1=t-3, thay vào phương trình trên ta có:
pt<=>t(t-3)=4
<=> t^2-3t-4=0
<=> (t-4)(t+1)=0
<=> t=4 hoặc t=-1
Thay t=12x^2+11x+2, có:
12x^2+11x+2=4 (1) hoặc 12t^2+11x+2= -1 (2)
Giải pt(1), ta có nghiệm x= [-11+ (căn bậc hai của (217)]/24 hoặc x= [-11-(căn bậc hai của(217)]/24
giải pt(2), ta thấy vô nghiệm.
( 4x + 1 ) ( 12x - 1 ) ( 3x + 2 ) ( x + 1 ) - 4
= ( 12x2 + 11x - 1 ) ( 12x2 + 11x + 2 ) - 4
Đặt 12x2 + 11x - 1 = a , ta có :
y2 + 3y - 4 = ( y - 1 ) ( y + 4 )
= ( 12x2 + 11x - 2 ) ( 12x2 + 11x + 6 )
.....
ko chắc
x2 + 2xy +7x+ 7y + y2 + 10
=x2+2xy+y2+7.(x+y)+10
=(x+y)2+7.(x+y)+10
=(x+y)2+2(x+y)+5(x+y)+10
=(x+y)(x+y+2)+5.(x+y+2)
=(x+y+2)(x+y+5)
\(a)x^2-5x+6\)
\(=x^2-2x-3x+6\)
\(=x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(x-3\right)\)
\(b)x^3-5x^2+8x-4\)
\(=x^3-x^2+x^2-5x^2+8x-4\)
\(=x^3-x^2-4x^2+4x+4x-4\)
\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x-2\right)^2\)
\(c)x^2-5x-14\)
\(=x^2+2x-7x-14\)
\(=x\left(x+2\right)-7\left(x+2\right)\)
\(=\left(x+2\right)\left(x-7\right)\)
Bài 3
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+y+2+x+y-3}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
.(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6
y = 5/6
Vậy nghiệm tìm được (x;y;z) = (1/2;5/6;-5/6)
\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\\ =\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\\ =\left(x^2+7x+11\right)^2-1-24\\ =\left(x^2+7x+11\right)^2-25\\ =\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\\ =\left(x^2+7x+6\right)\left(x^2+7x+16\right)\\ =\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
chữ đẹp thế :>>