Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
25n(n-1)-50(n-1) luôn chia hết cho 150 với mọi n là số nguyên
giúp mình chứng minh nha . Cám ơn mấy bạn
a ) \(x^3z+x^2yz-x^2z^2-xyz^2=\left(x^3z-x^2z^2\right)+\left(x^2yz-xyz^2\right)\)
\(=\left(x-z\right)\left(x^2z+xyz\right)\)
\(=xz\left(x-z\right)\left(x+y\right)\)
b ) \(p^{m+2}.q-p^{m+1}q^3-p^2q^{n+1}+pq^{n+3}\)
\(=p^{m+1}q\left(p-q^2\right)-pq^{n+1}\left(p-q^2\right)\)
\(=\left(p-q^2\right)\left(p^{m+1}q-pq^{n+1}\right)\)
\(=pq\left(p-q^2\right)\left(p^m-q^n\right)\)
a) \(x^{m+2}-2x^m=x^m\left(x^2-2\right)\)
b) \(x^{k+1}-x^{k+2}=x^{k+1}\left(1-x\right)\)
a) xm+2 - 2xm = xm.x2 + 2.xm = xm( x2 - 2 ) = xm( x - √2 )( x + √2 )
b) xk+1 - xk+2 = xk+1 - xk+1.x = xk+1( 1 - x )
Ta có \(x^2-\left(m+n\right)x+m.n=\left(x^2-mx\right)-\left(nx-m.n\right)\)
\(=x\left(x-m\right)-n\left(x-m\right)=\left(x-m\right)\left(x-n\right)\)
\(x^4+x^2+1\)
\(=\left[\left(x^2\right)^2+2x^2.1+1^2\right]-x^2\)
\(=\left(x^2+1\right)^2-x^2\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
\(\left(x^2-8\right)^2+36\)
\(=x^4-16x^2+64+36\)
\(=\left[\left(x^2\right)^2-2.10x^2+10^2\right]-\left(2x\right)^2\)
\(=\left(x^2-10\right)^2-\left(2x\right)^2\)
\(=\left(x^2-10-2x\right)\left(x^2-10+2x\right)\)
\(4x^4+81\)
\(=\left[\left(2x^2\right)^2+2.2x^2.9+9^2\right]-\left(6x\right)^2\)
\(=\left(2x^2+9\right)-\left(6x\right)^2\)
\(=\left(2x^2+9-6x\right).\left(2x^2+9+6x\right)\)
Tham khảo nhé~
\(x^{m+1}-x^m=x^m.x-x^m=x^m.\left(x-1\right)\)
\(x^{m+2}-x^m=x^m.x^2-x^m=x^m.\left(x^2-1\right)\)
\(x^{m+2}-x^2=x^m.x^2-x^2=x^2.\left(x^m-1\right)\)
Bài làm :
\(x^{m+1}-x^m=x^m.x-x^m=x^m.\left(x-1\right)\)
\(x^{m+2}-x^m=x^m.x^2-x^m=x^m.\left(x^2-1\right)\)
\(x^{m+2}-x^2=x^m.x^2-x^2=x^2.\left(x^m-1\right)\)