Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: ab(a + b) + bc(b + c) + ac(a + c) + 3abc
= ab(a + b) + abc + bc(b + c) + abc + ac(a + c) + abc
= ab(a + b + c) + bc(a + b + c) + ac(a + b + c)
= (a + b + c)(ab + bc + ca)
\(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)
\(=ab\left(a+b\right)+abc+bc\left(b+c\right)+abc+ca\left(c+a\right)\)
\(=ab\left(a+b+c\right)+bc\left(b+c+a\right)+ca\left(c+a\right)\)
\(=\left(a+b+c\right)\left(ab+bc\right)+ca\left(c+a\right)\)
\(=b.\left(a+b+c\right)\left(a+c\right)+ca\left(c+a\right)\)
\(=\left(a+c\right)\left[b.\left(a+b+c\right)+ca\right]\)
\(=\left(a+c\right)\left(ab+b^2+bc+ca\right)\)
\(=\left(a+c\right)\left[a\left(b+c\right)+b\left(b+c\right)\right]\)
\(=\left(a+c\right)\left(b+c\right)\left(a+b\right)\)
\(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc\)
\(=ab\left(a+b\right)+abc+bc\left(b+c\right)+abc+ca\left(c+a\right)+abc\)
\(=ab\left(a+b+c\right)+bc\left(b+c+a\right)+ca\left(c+a+b\right)\)
\(=\left(a+b+c\right)\left(ab+bc+ac\right)\)
Tham khảo nhé~
a.\(\left(x^2+x\right)^2+3\left(x^2+x\right)+2=\left(x^2+x\right)^2+2\left(x^2+x\right)+\left(x^2+x+2\right)\)
\(=\left(x^2+x\right)\left(x^2+x+2\right)+\left(x^2+x+2\right)=\left(x^2+x+2\right)\left(x^2+x+1\right)\)
b. \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]+1\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)(1)
Đặt \(t=x^2+3x\)
(1) \(\Leftrightarrow t\left(t+2\right)+1\)
\(=t^2+2t+1=\left(t+1\right)^2\)(2)
Thay \(t=x^2+3x\)vào (2) t/có:
\(\left(t+1\right)^2=\left(x^2+3x+1\right)^2\)
c. dài lắm mình lười làm, bn bấm thử mạng tìm ik nhớ tíck cho mình nha thanks
\(ab\left(a-b\right)-ac\left(a+c\right)+bc\left(2a-b+c\right)\)
\(=a^2b-ab^2-a^2c-ac^2+2abc-b^2c+bc^2\)
\(=a^2b-ab^2-a^2c-ac^2+abc+abc-b^2c+bc^2\)
\(=\left(bc^2-ac^2+abc-a^2c\right)-\left(b^2c-abc-ab^2+a^2b\right)\)
\(=c\left(bc-ac+ab-a^2\right)-b\left(bc-ac-ab+a^2\right)\)
\(=\left(c-b\right)\left(bc-ac+ab-a^2\right)\)
\(=\left(c-b\right)\left[c\left(b-a\right)+a\left(b-a\right)\right]\)
\(=\left(c-b\right)\left(c+a\right)\left(b-a\right)\)
Ta có: \(D=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc\)
\(=a^2b+ab^2+b^2c+bc^2+ac^2+a^2c+3abc\)
\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
\(ab\left(b-a\right)-bc\left(b-c\right)-ac\left(c-a\right)\)
\(=ab\left(b-a\right)-b^2c+bc^2-ac^2+a^2c\)
\(=ab\left(b-a\right)+c^2\left(b-a\right)-c\left(b^2-a^2\right)\)
\(=\left(b-a\right)\left(ab+c^2-bc-ca\right)\)
\(=\left(b-a\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)
\(=\left(b-a\right)\left(a-c\right)\left(b-c\right)\)
Không phân tích được bạn nhé ^^