K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

chỗ nào k hiểu hỏi mình lại ớ 

\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)

\(=xy\left(x+y\right)+xyz+xz\left(x+z\right)+xyz+yz\left(y+z\right)\)

\(=xy\left(x+y+z\right)+xz\left(x+y+z\right)+yz\left(y+z\right)\)

\(=x\left(y+z\right)\left(x+y+z\right)+yz\left(y+z\right)\)

\(=x\left(y+z\right)\left(x+y+z+yz\right)\)

 

5 tháng 10 2015

a) 

5x-5y+ax-ay = 5(x-y) +a(x-y) = (x-y)(5+a)

b) a^3 -a^2x-ay+xy = a^2(a-x) -y(a-x) = (a-x)(a^2-y)

c) xy(x+y) +yz(y+z) +xz(x+z) +2xyz = x^2.y+xy^2 +y^2.z+xz^2 +x^2.z+xz^2 +2xyz

= (x^2.y+x^2.z)+(xy^2+xz^2+2xyz)+(y^2.z+yz^2) = x^2(y+z) +x.(y+z)^2 +yz(y+z)

=(y+z)(x^2+x+yz)

28 tháng 7 2017

1 ) \(x^2-x-y^2-y=\left(x^2-y^2\right)+\left(-x-y\right)=\left(x+y\right)\left(x-y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)

2 ) \(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y+z\right)\left(x-y-z\right)\)

3 ) \(5x-5y+ax-ay=5.\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(5+a\right)\)

4 ) \(a^3-a^2x-ay+xy=a^2.\left(a-x\right)-y.\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)

5 ) \(xy.\left(x+y\right)+yz.\left(y+z\right)+xz.\left(x+z\right)+2xyz\)

\(=xy.\left(x+y\right)+y^2z+yz^2+x^2z+xz^2+xyz+xyz\)

\(=xy.\left(x+y\right)+\left(y^2z+xyz\right)+\left(yz^2+xz^2\right)+\left(x^2z+xyz\right)\)

\(=xy.\left(x+y\right)+yz.\left(x+y\right)+z^2.\left(x+y\right)+xz.\left(x+y\right)\)

\(=\left(x+y\right)\left(xy+yz+z^2+xz\right)=\left(x+y\right)\left[\left(xy+xz\right)+\left(yz+z^2\right)\right]\)

\(=\left(x+y\right)\left[x.\left(y+z\right)+z.\left(y+z\right)\right]=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

8 tháng 12 2015

xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

28 tháng 9 2016

xy(x+y)+yz(y+z)+xz(x+z)+2xyz 
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 
= xy(x + y) + yz(y + z + x) + xz(x + z + y) 
= xy(x + y) + z(x + y + z)(y + x) 
= (x + y)(xy + zx + zy + z2
= (x + y)[x(y + z) + z(y + z)] 
= (x + y)(y + z)(z + x)

28 tháng 9 2016

xy(x+y)+yz(y+z)+xz(x+z)+2xyz 
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

30 tháng 9 2015

nhu the nay:

   ( xy( x + y )+ xyz )+( yz( y + z )+ xyz )+( xz( a +c )+ xyz)

= xy( x+y+z )+ yz( x + y + z )+ xz( x + y + z )

= ( x + y + z)( xy + yz +zx )

xong rui do dung thi ****.

28 tháng 7 2016

xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

28 tháng 7 2016

xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

15 tháng 6 2017

a) \(5x-5y+ax-ay\)

\(\Leftrightarrow\) \(\left(5x+ax\right)-\left(5y+ay\right)\)

\(\Leftrightarrow\) \(x\left(5+a\right)-y\left(5+a\right)\)

\(\Leftrightarrow\) \(\left(5+a\right)\left(x-y\right)\)

15 tháng 6 2017

b) \(a^3-a^2x-ay+xy\)

\(\Leftrightarrow\) \(a^2\left(a-x\right)-y\left(a-x\right)\)

\(\Leftrightarrow\) \(\left(a-x\right)\left(a^2-y\right)\)