Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-3y+1\right)\)
\(=\left(3x+2y+3\right)\left(-x-4y+5\right)\)
\(49\left(y-4\right)^2-9y^2-36y-36\)
\(=49\left(y-4\right)^2-\left(9y^2+36y+36\right)\)
\(=49\left(y-4\right)^2-\left(3y+6\right)^2\)
\(=[7\left(y-4\right)]^2-\left(3y+6\right)^2\)
\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)
\(=\left(7y-28+3y+6\right)\left(7y-28-3y-6\right)\)
\(=\left(10y-22\right)\left(4y-34\right)\)
\(b,9x^2+90x+225-\left(x-y\right)^2\)
\(=\left(3x+15\right)^2-\left(x-y\right)^2\)
\(=\left(3x+15-x+y\right)\left(3x+15+x-y\right)\)
\(=\left(2x+y+15\right)\left(4x-y+15\right)\)
Ta có :
\(1)\left(x^2+y^2-5\right)-4x^2y^2-16xy-16\)
\(=\left(x^2+y^2-5\right)^2-[\left(2xy\right)^2+2.2xy.4+4^2]\)
\(=\left(x^2+y^2-5\right)^2-\left(2xy+4\right)^2\)
\(=\left(x^2+y^2-5-2xy-4\right)\left(x^2+y^2-5+2xy+4\right)\)
\(=\left(x^2+y^2-2xy-9\right)\left(x^2+y^2+2xy-1\right)\)
\(=\left[\left(x-y\right)^2-3^2\right]\left[\left(x+y\right)^2-1\right]\)
\(=\left(x-y+3\right)\left(x-y-3\right)\left(x+y-1\right)\left(x+y+1\right)\)
\(2)x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)
\(=x^2y^2\left(y-z+z-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)
\(=x^2y^2\left(y-z\right)+x^2y^2\left(z-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)
\(=\left(y-z\right)\left(x^2y^2-y^2z^2\right)+\left(z-x\right)\left(x^2y^2-z^2x^2\right)\)
\(=\left(y-z\right)\left(xy-yz\right)\left(xy+yz\right)+\left(z-x\right)\left(xy-zx\right)\left(xy+xz\right)\)
\(=y^2\left(y-z\right)\left(x-z\right)\left(x+z\right)+x^2\left(z-x\right)\left(y-z\right)\left(y+z\right)\)
\(=\left(y-z\right)\left(x-z\right)[y^2\left(x+z\right)-x^2\left(y+z\right)]\)
\(=\left(y-z\right)\left(x-z\right)(y^2x+y^2z-x^2y-x^2z)\)
\(=\left(y-z\right)\left(x-z\right)[(y^2x-x^2y)+(y^2z-x^2z)]\)
\(=\left(y-z\right)\left(x-z\right)[xy(y-x)+z(y^2-x^2)]\)
\(=\left(y-z\right)\left(x-z\right)[xy(y-x)+z(y-x)\left(x+y\right)]\)
\(=\left(y-z\right)\left(x-z\right)(y-x)\left(xy+xz+yz\right)\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)