Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) x2 - 2xy + y2 - zx + yz
= ( x2 - 2xy + y2 ) - ( zx - yz )
= ( x - y )2 - z( x - y )
= ( x - y )( x - y - z )
b) x3 - x2 - 5x + 125
= ( x3 + 125 ) - ( x2 + 5x )
= ( x + 5 )( x2 -.5x + 25 ) - x( x + 5 )
= ( x + 5 )( x2 - 5x + 25 - x )
= ( x + 5 )( x2 - 6x + 25 )
# Học tốt #
câu a nhầm đề à bạn,mk nghĩ -xz chứ ko phải -xy.
\(x^2-2xy+y^2-xz+yz\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
Bài giải:
a) x3 + 2x2y + xy2– 9x = x(x2 +2xy + y2 – 9)
= x[(x2 + 2xy + y2) – 9]
= x[(x + y)2 – 32]
= x(x + y – 3)(x + y + 3)
b) 2x – 2y – x2 + 2xy – y2 = (2x – 2y) – (x2 – 2xy + y2)
= 2(x – y) – (x – y)2
= (x – y)[2 – (x – y)]
= (x – y)(2 – x + y)
c) x4 – 2x2 = x2(x2 – (√2)2) = x2(x - √2)(x + √2).
a) x3 + 2x2y + xy2– 9x = x(x2 +2xy + y2 – 9)
= x[(x2 + 2xy + y2) – 9]
= x[(x + y)2 – 32]
= x(x + y – 3)(x + y + 3)
b) 2x – 2y – x2 + 2xy – y2 = (2x – 2y) – (x2 – 2xy + y2)
= 2(x – y) – (x – y)2
= (x – y)[2 – (x – y)]
= (x – y)(2 – x + y)
c) x4 – 2x2 = x2(x2 – (√2)2) = x2(x - √2)(x + √2).
Bài giải:
a) x2 – xy + x – y = (x2 – xy) + (x - y)
= x(x - y) + (x -y)
= (x - y)(x + 1)
b) xz + yz – 5(x + y) = z(x + y) - 5(x + y)
= (x + y)(z - 5)
c) 3x2 – 3xy – 5x + 5y = (3x2 – 3xy) - (5x - 5y)
= 3x(x - y) -5(x - y) = (x - y)(3x - 5).
\(a) x^2 - xy+x-y\) \(= (x^2 - xy) + ( x- y) \)
\(=x(x-y) + (x-y)\)
\(= (x-y) (x+1)\)
\(b) xz + yz - 5(x+y)\) \(= (xz + yz) - 5(x+y)\)
\(= z(x+y) - 5(x+y)\)
\(= (x+y) (z-5)\)
\(c) 3x^2 - 3xy - 5x +5y = (3x^2-3xy) - (5x-5y)\)
\(= 3x(x-y) - 5(x-y)\)
\(= (x-y)(3x-5)\)
Câu 2 nha
\(a,x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(c,x^2-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
a) 3( x - y ) - 5x( y - x )
= 3( x - y ) - 5x[ -( x - y ) ]
= 3( x - y ) + 5x( x - y )
= ( 3 + 5x )( x - y )
b) x3 + 2x2y + xy2 - 9x
= x( x2 + 2xy + y2 - 9 )
= x[ ( x + y )2 - 32 ]
= x( x + y - 3 )( x + y + 3 )
c) 14x2y - 21xy2 + 28x2y2
= 7xy( 2x - 3y + 4xy )
Bài giải
\(a,\text{ }3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(3+5x\right)\)
\(b,\text{ }x^3+2x^2y+xy^2-9x\)
\(=x\left(x^2+2xy+y^2-9\right)\)
\(=x\left[\left(x+y\right)^2-3^2\right]\)
\(=x\left(x+y+3\right)\left(x+y-3\right)\)
\(c,\text{ }14x^2y-21xy^2+28x^2y\)
\(=7xy\left(2x-3y+4x\right)\)
\(=7xy\left(6x-3y\right)\)
\(\left(a\right)\left(x^2+x\right)^2+9x^2+9x+14\)
\(\text{ Phân tích thành nhân tử}\)
\(\left(x^2+x+2\right)\left(x^2+x+7\right)\)
\(\left(b\right)x^2+2xy+y^2+2x-2y-3\)
\(\text{ Phân tích thành nhân tử}\)
\(y^2+2xy-3y+x^2+2x-3\)
Xong rùi đấy !
\(1\hept{\begin{cases}6x^2-8x+3x-4\\2x\left(3x-4\right)+\left(3x-4\right)\\\left(3x-4\right)\left(2x+1\right)\end{cases}}\)
\(2\hept{\begin{cases}7x^2-7xy-5x+5y+6xy\\7x\left(x-y\right)-5\left(x-y\right)+\frac{6xy\left(x-y\right)}{\left(x-y\right)}\\\left(x-y\right)\left(7x-5+\frac{6xy}{\left(x-y\right)}\right)\end{cases}}\)
\(3\hept{\begin{cases}5x\left(x-y\right)-15\left(x-y\right)\\\left(x-y\right)\left(5x-15\right)\end{cases}}\)
\(4,,2x^2+x=x\left(2x+1\right)\)
\(5\hept{\begin{cases}x^3-4x-3x^2+12\\x\left(x^2-4\right)-3\left(x^2-4\right)\\\left(x+2\right)\left(x-2\right)\left(x-3\right)\end{cases}}\)
\(6\hept{\begin{cases}2x+2y+x^2-y^2\\2\left(x+y\right)+\left(x+y\right)\left(x-y\right)\\\left(x+y\right)\left(2+x-y\right)\end{cases}}\)
\(7\hept{\begin{cases}\left(x^2y-2xy\right)-\left(xy-2y\right)+\left(xy-y\right)\\xy\left(x-2\right)-y\left(x-2\right)+y\left(x-1\right)\\y\left(X-2\right)\left(x-1\right)+y\left(x-1\right)\end{cases}}\Leftrightarrow y\left(x-1\right)\left(x-2+1\right)\)
\(8\hept{\begin{cases}x\left(2-y\right)+z\left(2-y\right)\\\left(2-y\right)\left(x+1\right)\end{cases}}\)
a) \(\left(x+y\right)^3-x^3-y^3\)
\(=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-x^2+xy-y^2\right]\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)
\(=3xy\left(x+y\right)\)
b) \(x^2+y^2+2xy+yz+xz\)
\(=\left(x^2+2xy+y^2\right)+\left(yz+xz\right)\)
\(=\left(x+y\right)^2+z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y+z\right)\)
c) \(x^2-10xy-1+25y^2\)
\(=\left(x^2-10xy+25y^2\right)-1\)
\(=\left(x-5y\right)^2-1\)
\(=\left(x-5y-1\right)\left(x-5y+1\right)\)
d) \(ax^2-ax+bx^2-bx+a+b\)
\(=(ax^2+bx^2)-(ax+bx)+(a+b)\)
\(=x^2(a+b)-x(a+b)+(a+b)\)
\(=(a+b)(x^2-x+1)\)
e)\(x^2-2y+3xz+x-2y+3z\)
\(=(x^2+x)-(2xy+2y)+(3xz+3z)\)
\(=x(x+1)-2y(x-1)+3z(x+1)\)
\(=(x+1)(x-2y+3z)\)
f) \(xyz-xy-yz-xz+x+y+z-1\)
\(=(xyz-xy)-(yz-y)-(xz-x)+(z-1)\)
\(=xy(z-1)-y(z-1)-x(z-1)+(z-1)\)
\(=(z-1)(xy-y-x+1)\)
\(=(z-1)[y(x-1)-(x-1)]\)
\(=(z-1)(x-1)(y-1)\)
_Học tốt_
\(a.\left(xy+yz\right)-\left(5x+5z\right)\)
\(=y\left(x+z\right)-5\left(x+z\right)\)
\(=\left(x+z\right)\left(y-5\right)\)
\(b.\left(x^2+2xy+y^2\right)-9x^2\)
\(=\left(x+y\right)^2-9x^2\)
\(=\left(x+y-3x\right).\left(x+y+3x\right)\)
\(=\left(y-2x\right).\left(y+4x\right)\)
a. Đề=\(y\left(x+z\right)-5\left(x+z\right)\)\(=\left(x+z\right)\left(y-5\right)\)
b. Đề=\(\left(x+y\right)^2-\left(3x\right)^2\)\(=\left(x+y-3x\right)\left(x+y+3x\right)\)\(=\left(y-2x\right)\left(y+4x\right)\)