Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4\)
\(=4a^2b^2-\left(2a^2b^2-2b^2c^2-2a^2c^2+a^4+b^4+c^4\right)\)
\(=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
\(=\left[c^2-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-c^2\right]\)
\(=\left(c+a-b\right)\left(c-a+b\right)\left(a+b-c\right)\left(a+b+c\right)\)
Nếu a,b,c là độ dài 3 cạnh thì ta có:
c + a > b (bất đẳng thức tam giác)
a + b > c (bất đẳng thức tam giác)
b + c > a (bất đẳng thức tam giác)
mà a,b,c > 0
=> a + b + c dương
a + c - b dương
a + b - c dương
b + c - a dương
=> A dương
câu a làm theo hằng đẳng thức
câu b ta sẽ đc (b^2 +c^2 -a^2 -2bc )(b^2 +c^2 -a^2 +2bc ) = { (b-c)^2 -a^2 } {(b+c)^2-a^2}
theo bất đẳng thức trong tam giác thì hiệu 2 cạnh luôn nhỏ hơn cạnh còn lại nên {(b-c)^2-a^2} <0
mà {(b+c)^2-a^2} >0 \(\Rightarrow\)A<0
k cho mk cái nha
a, \(A=\left(b^2+c^2-a^2\right)-4b^2c^2\)
\(\Rightarrow A=\left(b^2+c^2-a^2\right)-\left(2bc\right)^{^2}\)
\(\Rightarrow A=\left(b^2+c^2-a^2-2bc\right)\left(b^2+c^2-a^2+2bc\right)\)
\(\Rightarrow A=\left[\left(b-c\right)^2-a^2\right]\left[\left(b+c\right)^2-a^2\right]\)
\(\Rightarrow A=\left(c-b-a\right)\left(c-b+a\right)\left(c+b-a\right)\left(c+b+a\right)\)
b, Như bạn Trần Thị Nhung
1/ phân tích thành nhân tử ;
= C2-( a +b )2=( c-a -b ) . ( c+a +b )
2a2b2+2a2c2+2b2c2-a4-b4-c4
=4a2b2-(a4+2a2b2+b4)+(2b2c2+2a2c2)-c4
=2(ab)2-(a+b)2+2c2(a2+b2)+c4
=2(ab)2-[(a+b)2-2c2(a2+b2)+c4]
=2(ab)2-(b2+a2-c2)2
=[(a+b)2-c2][-(a-b)2+c2]
=(a+b-c)(a+b+c)(c-a+b)(a+c-b)
\(2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4\)
\(=4a^2b^2-\left(a^4+2a^2b^2+b^4\right)+\left(2b^2c^2+2a^2c^2\right)-c^4\)
\(=2\left(ab\right)^2-\left(a+b\right)^2+2c^2\left(a^2+b^2\right)+c^4\)
\(=2\left(ab\right)^2-\left[\left(a+b\right)^2-2c^2\left(a^2+b^2\right)+c^4\right]\\ =2\left(ab\right)^2-\left(b^2+a^2-c^2\right)^2\)
=\(\left[\left(a+b\right)^2-c^2\right]\left[-\left(a-b\right)^2+c^2\right]\\ =\left(a+b+c\right)\left(a+b+c\right)\left(c-a+b\right)\left(a+c-b\right)\)