Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
\(5x^2-10xy+5y^2-20z^2\)
\(=5.\left(x^2-2xy+y^2-4z^2\right)\)
\(=5.[\left(x+y\right)^2-\left(2z\right)^2]\)
\(=5.\left(x+y-2z\right).\left(x+y+2z\right)\)
\(16x-5x^2-3\)
\(=\left(-5x^2+15x\right)+\left(x-3\right)\)
\(=-5x.\left(x-3\right)+\left(x-3\right)\)
\(=\left(1-5x\right).\left(x-3\right)\)
\(x^2-5x+5y-y^2\)
\(=(x-y).(x+y)-5.(x-y)\)
\(=(x-y).(x+y-5)\)
\(3x^2-6xy+3y^2-12z^2\)
\(=3.(x^2-2xy+y^2-4z^2)\)
\(=3[\left(x-y\right)^2-\left(2z\right)^2]\)
\(=3.(x-y-2z).(x-y+2z)\)
\(x^2+4x+3\)
\(=(x^2+x)+(3x+3)\)
\(=x.(x+1)+3.(x+1)\)
\(=(x+1).(x+3)\)
\((x^2+1)^2-4x^2\)
\(=(x^2-2x+1).(x^2+2x+1)\)
\(=(x-1)^2.(x+1)^2\)
\(x^2-4x-5\)
\(=(x^2+x)-(5x+5)\)
\(=x.(x+1)-5.(x+1)\)
\(=(x-5).(x+1)\)
g) \(x^5-3x^4+3x^3-x^2=x^2\left(x^3-3x^2+3x-1\right)=x^2\left(x-1\right)^3\)
f) \(x^2-25-2xy+y^2=\left(x^2-2xy+y^2\right)-25=\left(x-y\right)^2-5^2=\left(x-y-5\right)\left(x-y+5\right)\)
e) \(16x^3+54y^3=2\left(8x^3+27y^3\right)=2\left[\left(2x\right)^3+\left(3y\right)^3\right]=2\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
d) \(3y^2-3z^2+3x^2+6xy=3\left(x^2+2xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)
\(4x^2-25+\left(2x+7\right).\left(5-2x\right)\)
\(=\left(2x+5\right).\left(2x-5\right)-\left(2x+7\right).\left(2x-5\right)\)
\(=\left(2x+5-2x-7\right).\left(2x-5\right)\)
\(=-2.\left(2x-5\right)\)
\(a^2x^2-a^2x^2-b^2x^2+b^2y^2\)
\(=a^2.\left(x^2-y^2\right)-b^2.\left(x^2-y^2\right)\)
\(=\left(a^2-b^2\right).\left(x^2-y^2\right)\)
\(=\left(a-b\right).\left(a+b\right).\left(x-y\right).\left(x+y\right)\)
\(x^2-y^2+12y-36\)
\(=x^2-\left(y^2-12y+36\right)\)
\(=x^2-\left(y-6\right)^2\)
\(=\left(x-y+6\right).\left(x+y-6\right)\)
\(\left(x+2\right)^2-x^2+2x-1\)
\(=\left(x+2\right)^2-\left(x^2-2x+1\right)\)
\(=\left(x+2\right)^2-\left(x-1\right)^2\)
\(=[x+2-\left(x-1\right)].[x+2+\left(x-1\right)]\)
\(=\left(x+2-x+1\right).\left(x+2+x-1\right)\)
\(=3.\left(2x+1\right)\)
\(16x^2-y^2=\left(4x\right)^2-y^2=\left(4x-y\right).\left(4x+y\right)\)
\(1+27x^3=1^3+\left(3x\right)^3=\left(1+3x\right).\left(1-3x+9x^2\right)\)
a) \(=2xy^2\left(x^2+8x+15\right)\)
\(=2xy^2\left[\left(x^2+8x+16\right)-1\right]\)
\(=2xy^2\left[\left(x+4\right)^2-1\right]\)
\(=2xy^2\left(x+4+1\right)\left(x+4-1\right)\)
\(=2xy^2\left(x+5\right)\left(x-3\right)\)
mấy câu sau tự làm nha :*
b,=(x^2-10x+25)-4
=(x-5)^2-2^2
=(x-5-2)(x-5+2)
=(x-7)(x-3)
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
a)
(x2- 4 ) - ( x - 2 )( 3 - 2x ) = 0
=> x2 -4 - ( 3x - 2x2 - 6 + 4x ) = 0
=> x2 + 2x2 - 7x + 2 =0
=> 3x2 - 7x +2 = 0
=> x = 1/3 và x = 2
b)
2x3 + 6x2 = x2 + 3x
2x2(x+3) = x(x+3)
<=> x(x+3)(2x-1) = 0
<=> x=0 x=-3 và x=1/2
a)(x2 _4)–(x-2)(3-2x)=0
<=>3x^2-7x+2=0
=>(x-2)(3x-1)=0
=>x-2=0 hoặc 3x-1=0
=>x=2 hoặc x=1/3
b) 2x3+ 6x2 =x2+3x
=> 2x3+5x2-3x=0
<=>2x3+5x2-3x=x(x+3)(2x-1)
=>x(x+3)(2x-1)=0
=>x=0 hoặc x+3=0 hoặc 2x-1=0
=.x=0 hoặc -3 hoặc 1/2
Gửi bạn nè. Chúc bạn học tốt !