K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

Bài 1:

\(a,\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\)

\(=2x\left(4x+2\right)=4x\left(2x+1\right)\)

b, \(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xyz-3xy\left(x+y\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-yz-xz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

18 tháng 8 2017

\(87^2+73^2-27^2-13^2=\left(87^2-13^2\right)+\left(73^2-27^2\right)=74.100+46.100=100\cdot\left(74+46\right)=12000\)

\(\left(x+y\right)^2-\left(x-y\right)^2\)

\(=\left(x+y-x+y\right)\left(x+y+x-y\right)\)

\(=2y.2x\)

\(=4xy\)

29 tháng 9 2016

b)  (3x+1)2-(x+1)2

=(3x+1+x+1)[(3x+1)-(x+1)]

=(4x+2)2x

=2(2x+1)2x

=4x(2x+1)

c) x3+y3+z3-3xyz

=(x+y)3-3xy(x+y)+z3-3xyz

=[(x+y)3+z3]-3xy(x+y+z)

=(x+y+z)[(x+y)2-z(x+y)+z2]-3xy(x+y+z)

=(x+y+z)(x2+2xy+y2-xz-zy+z2-3xy)

=(x+y+z)(x2+y2+z2-xy-yz-zx)

22 tháng 7 2016

hằng đẳng thức a2-b2=(a-b)(a+b) í bạn

29 tháng 11 2017

\(\left(x^2+xy\right)^2-\left(y^2+xy\right)^2\)

\(=\left(x^2+xy-y^2-xy\right)\left(x^2+xy+y^2+xy\right)\)

\(=\left(x^2-y^2\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x+y\right)^2\)

\(=\left(x-y\right)\left(x+y\right)^3\)

29 tháng 11 2017

•x3+y3+z3-3xyz=(x+y)3-3xy(x+y)+z3-3xyz

=(x+y+z)[(x+y)2-(x+y).z+z2]-3xy(x+y+z)

=(x+y+z)(x2+y2+z2+2xy-xz-yz) -3xy(x+y+z)

=(x+y+z)(x2+y2+z2-xy-yz-xz)

•(x2+xy)2-(y2+xy)2=[x(x+y)]2-[y(x+y)]2

=x2.(x+y)2-y2.(x+y)2

=(x+y)2.(x2-y2)=(x+y)2.(x+y).(x-y)

=(x+y)3(x-y)

•3x2-3x-36=3.(x2-x-12)

=3(x2-4x+3x-12)

=3[x(x-4)+3(x-4)]=3(x-4)(x+3)

5 tháng 7 2018

ai h dung minh giai cho

3 tháng 9 2018

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

22 tháng 7 2016

a) Đề bài phải là : \(\left(x+y\right)^2-\left(x-y\right)^2\)thì mới phân tích được.

Nếu đề bài như trên ta có:

 \(\left(x+y\right)^2-\left(x-y\right)^2=\)\(\left(x+y-x+y\right)\left(x+y+x-y\right)=2x\cdot2y=4xy\)

b) Ta có: \(\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\)

            = \(2x\cdot\left(4x+2\right)=2x\cdot2\cdot\left(2x+1\right)=4x\cdot\left(2x+1\right)\)

c) Ta có : \(x^3+y^3+z^3-3xyz\)

\(\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xy\)

=\(\left(x+y+z\right)\left(\left(x+y\right)^2-\left(x+y\right)z+z^2\right)-3xy\left(x+y+z\right)\)

=\(\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

=\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

 

13 tháng 6 2015

a) \([(x-y)3 + (y-z)3]+ (z-x)3\)=\(\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)

\(=\left(x-z\right)\left[\left(\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right)\right]\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]=\left(x-z\right)\left[\left(x-2y+z\right)\left(x+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)=\left(x-z\right)\left(x-y\right)\left(z-y\right)3\)

b) \(=y^2\left(x^2y-x^3+z^3-z^2y\right)-z^2x^2\left(z-x\right)=y^2\left[-y\left(z^2-x^2\right)-\left(z^3-x^3\right)\right]-z^2x^2\left(z-x\right)\)

\(=y^2\left(z-x\right)\left(-yz-xy-z^2-zx-x^2\right)-z^2x^2\left(z-x\right)=\left(z-x\right)\left(-y^3z-xy^2-z^2y^2-xyz-x^2y^2-z^2x^2\right)\)

đến đây coi như là thành nhân tử rồi nha. em muốn gọn thì ráng ngồi nghĩ rồi tách nha. chỉ cần nhóm mấy cái có ngoặc giống nhau là đc. k khó đâu. chịu khó nghĩ để rèn luyện nha

c) \(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)

\(\left(9a^3-6a^2\right)+\left(6a^2-4a\right)+\left(-9a+6\right)=3a^2\left(3a-2\right)+2a\left(3a-2\right)-3\left(3a-2\right)=\left(3a-2\right)\left(3a^2+2a-3\right)\)

d) em sửa đề đi. đề sai rồi. đồng nhất hệ số phải có dấu bằng nha.

có gì liên hệ chị. đúng nha ;)

1 tháng 11 2017

a,81-(x^2-4xy+4y^2)=81-(x-2y)^2=(9-(x-2y))(9+(x-2y))=(9-x+2y)(9+x-2y)

b,x^3+y^3+z^3-3xyz=(x^3+3(x^2)y+3x(y^2)+y^3)+z^3-3xyz-3xy(x+y)

=((x+y)^3+3((x+y)^2)z+3(x+y)z^2+z^3)-(3xyz-3xy(x+y))-3(x+y)z(x+y+z)

=(x+y+z)^3-3(x+y)z(x+y+z)-3xy(x+y+z)=(x+y+z)((x+y+z)^2-3(x+y)z-3xy)

=(x+y+z)(x^2+y^2+z^2+2xy+2yz+2xz-3xy-3yz-3xz)=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)

3 tháng 9 2018

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)