Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(a^3y^3+125\)
\(=\left(ay+5\right)\left(a^2y^2-5ay+25\right)\)
b) Ta có: \(8x^3-y^3-6xy\cdot\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)-6xy\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+2xy-6xy+y^2\right)\)
\(=\left(2x-y\right)^3\)
Trả lời:
1, 15x + 15y = 15 ( x + y )
2, 8x - 12y = 4 ( 2x - 3y )
3, xy - x = x ( y - 1 )
4, x2 + x = x ( x + 1 )
5, 3x2y - 8xy2 = xy ( 3x - 8y )
6, 6x - 12xy - 18x2 = 6x ( 1 - 2y - 3x )
Đặt \(x+y=u\)
Biểu thức trở thành \(u^2-8u+12\)
\(=u^2-2u-6u+12\)
\(=u\left(u-2\right)-6\left(u-2\right)\)
\(=\left(u-6\right)\left(u-2\right)\)
Thay ngược trở lại, ta được:
\(\left(x+y\right)^2-8\left(x+y\right)+12=\left(x+y-6\right)\left(x+y-2\right)\)
\(x^2+2xy+7x+7y+y^{2+10}\)
\(\text{phân tích đa thức thành nhân tử}\)
\(y^{12}+2xy+7y+x^2+7x\)
tách \(^{x^2}\)ra rồi làm thừa số chung, toán SGK đem ra hỏi làm j
\(\left(x-y\right)^3-\left(x+y\right)^3\\ =\left(x-y-x-y\right)\left(\left(x-y\right)^2+\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\right)\\ =-2y\left(x^2-2xy+y^2+x^2-y^2+x^2+2xy+y^2\right)\\ =-2y\left(3x^2+y^2\right)\)
\(\left(x-y\right)^3+\left(x+y\right)^3\\ =\left(x-y+x+y\right)\left(\left(x-y\right)^2-\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\right)\\ =2x\left(x^2-2xy+y^2-\left(x^2-y^2\right)+x^2+2xy+y^2\right)\\ =2x\left(x^2-2xy+y^2-x^2+y^2+x^2+2xy+y^2\right)\\ =2x\left(x^2+3y^2\right)\)
\(x^2-y^2+8x+6y+7\)
\(=\left(x-y\right)\left(x+y\right)+7\left(x+y\right)+x-y+7\)
\(=\left(x+y\right)\left(x-y+7\right)+\left(x-y+7\right)\)
\(=\left(x+y+1\right)\left(x-y+7\right)\)
\(x^2-y^2\)
\(=x^2+xy-xy-y^2\)
\(=x\left(x+y\right)-y\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)\)
=(x-y-2y)[(x-y)^2+2y(x-y)+4y^2]
=(x-3y)(x^2-2xy+y^2+2xy-2y^2+4y^2)
=(x-3y)(x^2+3y^2)
\(\left(x-y\right)^3-8y^3\)
\(=\left(x-y\right)^3-\left(2y\right)^3\)
\(=\left[\left(x-y\right)-2y\right]\left[\left(x-y\right)^2+2y\left(x-y\right)+\left(2y\right)^2\right]\)
\(=\left(x-y-2y\right)\left(x^2-2xy+y^2+2xy-2y^2+4y^2\right)\)
\(=\left(x-3y\right)\left(x^2+3y^2\right)\)
\(3x\cdot\left(x-y\right)^2-6\cdot\left(y-x\right)\)
\(=3x\left(x-y\right)^2+6\left(x-y\right)\)
\(=\left(x-y\right)\left[3x\left(x-y\right)+6\right]\)
\(=\left(x-y\right)\left(3x^2-3xy+6\right)\)
(x - y)(3x2 - 3xy + 6)