Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
b)
Đặt \(x^2+3x+1=t\), ta có:
\(t\left(t+1\right)-6\)
\(=t^2+t-6\)
\(=t^2+3x-2x-6\)
\(=t\left(t+3\right)-2\left(t+3\right)\)
\(=\left(t+3\right)\left(t-2\right)\)
a, \(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
b, \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
\(=\left(x^2+3x+1,5\right)^2-0,5^2-6\)
\(=\left(x^2+3x+1,5\right)^2-2,5^2\)
\(=\left(x^2+3x+1,5-2,5\right)\left(x^2+3x+1,5+2,5\right)\)
\(=\left(x^2+3x-1\right)\left(x^1+3x+1\right)\)
Đặt \(x^2-3x-1=a\)thay vào biểu thức ta được :
\(a^2-12a+27\)
\(=a^2-3a-9a+27\)
\(=a\left(a-3\right)-9\left(a-3\right)\)
\(=\left(a-3\right)\left(a-9\right)\)(1)
Thay \(a=x^2-3x-1\)vào (1) ta được :
\(\left(x^2-3x-1-3\right)\left(x^2-3x-1-10\right)\)
\(=\left(x^2-3x-4\right)\left(x^2-3x-11\right)\)
Bạn Châu sai đáp án cuối
phải là (x2-3x-4)(x2-3x-10) nha
Đặt x^2-3x-2=t =>(t+4)(t-4)+12=t-16+12=t-4=(t+2)(t-2)
=>(x^2-3x-2+2)(x^2-3x-2-2)=(x^2-3x)(x^2-3x-4)
Ta có : (x3 + 3x + 1)(x3 + 3x + 2) - 6
= (x3 + 3x + 1,5 - 0,5)(x3 + 3x + 1,5 + 0,5) - 6
= (x3 + 3x + 1,5)2 - 0,52 - 6
= (x3 + 3x + 1,5)2 - 6,25
= (x3 + 3x + 1,5 - 2,5) (x3 + 3x + 1,5 + 2,5)
= (x3 + 3x - 1) (x3 + 3x + 3)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
a) \(x^3-3x+1-3x^2=\left(x^3+1\right)-\left(3x^2+3x\right)=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1-3x\right)=\left(x+1\right)\left(x^2-4x+1\right)\)
b) \(2x^2+4x+2-2y^2=2\left(x^2+2x+1-y^2\right)=2\left[\left(x+1\right)^2-y^2\right]=2\left(x+1+y\right)\left(x+1-y\right)\)
\(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
Đặt \(x^2+3x+1=a,\)ta được:
\(a\left(a+1\right)-6\)
\(=a^2+a-6=\left(a^2+3a\right)-\left(2a+6\right)\)
\(=a\left(a+3\right)-2\left(a+3\right)=\left(a+3\right)\left(a-2\right)\)
Thay \(a=x^2+3x+1,\)ta được:
\(\left(x^2+3x+1+3\right)\left(x^2+3x+1-2\right)\)\(=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)
\(x^{12}-3x^6+1=\left(x^{12}+x^9-x^6\right)-\left(x^9-x^3+x^6\right)-\left(x^3-1+x^6\right)=x^6\left(x^6+x^3-1\right)-x^3\left(x^6+x^3-1\right)-\left(x^6+x^3-1\right)\)
\(=\left(x^6+x^3-1\right)\left(x^6-x^3-1\right)\)
x12-2x6+1-x6
=(x6-1)2-x6
= (x6-1-x3)(x6-1+x3)