Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta nhận thấy sự giống nhau gữa các biểu thức trong và ngoài bình phương, từ đó nghĩ đến việc đặt ẩn phụ.
Đặt \(x^2+x=t\) , khi đó đa thức đã cho trở thành \(t^2+4t-12=\left(t-2\right)\left(t+6\right)\)
Quay trở lại biến x ta có: \(\left(x^2+x+6\right)\left(x^2+x-2\right)\)
Đặt \(A=\left(x^2+x\right)^2+4x^2+4x-12\)
\(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
Đặt \(x^2+x=t\)
Khi đó: \(A=t^2+4t-12\)
\(=\left(t-2\right)\left(t+6\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+6\right)\)
\(=\left[x^2+2x-x-2\right].\left(x^2+x+6\right)\)
\(=\left[x\left(x+2\right)-\left(x+2\right)\right].\left(x^2+x+5\right)\)
\(=\left(x+2\right)\left(x-1\right)\left(x^2+x+5\right)\)
Mong bạn hiểu lời giải và chúc bạn học tốt.
Pham Van Hung. Hình như bạn sai đó, xem kĩ lại dòng thức 2 và 3 từ dưới lên đi.
\(=\left(x^2+x\right)^2+4\left(x^2+x\right)+4-16\\ =\left(x^2+x+2\right)^2-16\\ =\left(x^2+x+2-4\right)\left(x^2+x+2+4\right)\\ =\left(x^2+x-2\right)\left(x^2+x+6\right)\\ =\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
=\(x^4+2x^3+x^2+4x^2+4x-12\)
=\(x^4+2x^3+5x^2+4x-12\)
=\(x^4-x^3+3x^3-3x^2+8x^2+4x-12\)
=\(x^3(x-1)+3x^2(x-1)+4(2x^2+x-3)\)
=\(x^3(x-1)+3x^2(x-1)+4(2x^2-2x+3x-3)\)
=\(x^3(x-1)+3x^2(x-1)+4[2x(x-1)+3(x-1)]\)
=\(x^3(x-1)+3x^2(x-1)+4(x-1)(2x+3)\)
=\((x-1)[x^3+3x^2+4(2x+3)]\)
=\((x-1)(x^3+3x^2+8x+12)\)
\(\left(x^2+x\right)^2+\left(4x^2+4x\right)+4-16\\ =\left(x^2+x+2\right)^2-16\\ =\left(x^2+x+2-4\right)\left(x^2+x+2+4\right)\\ =\left(x^2+x-2\right)\left(x^2+x+6\right)\)
\(x^2+x-2\) vẫn còn phân tích được nữa bạn nhé.
\(x^2+x-2=\left(x-1\right)\left(x+2\right)\)
\(\left(x^2+x\right)^2+4x^2+4x-12=\left(x^2+x\right)^2+4\left(x^2+x\right)+4-16=\left(x^2+x+2\right)^2-\left(4\right)^2=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
a) \(x^2-6x+8\)
\(=x^2-6x+9-1\)
\(=\left(x^2-6x+9\right)-1\)
\(=\left(x-3\right)^2-1\)
\(=\left(x-3-1\right)\left(x-3+1\right)\)
\(=\left(x-4\right)\left(x-2\right)\)
a) x2 + 4x + 3
= x2 + 3x + x +3
= ( x2 + 3 ) + ( x + 3 )
= x ( x + 3 ) + ( x + 3 )
= ( x + 3 ) ( x + 1 )
b) 4x2 - 4x - 3
= 4x2 + 2x - 6x - 3
= ( 4x2 + 2x ) - ( 6x + 3 )
= 2x ( 2x + 1 ) - 3 ( 2x + 1 )
= ( 2x + 1 )( 2x - 3 )
c) x2 - x - 12
= x2 + 3x - 4x - 12
= ( x2 + 3x ) - ( 4x + 12 )
= x ( x + 3 ) - 4 ( x + 3 )
= ( x + 3 ) ( x - 4 )
d) 4x4 - 4x2y2 - 8y4
= 4 ( x4 - x2y2 - 2y4 )
Hk tốt