K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2021

a)2x^2+xy-y^2-x+2y-1

=2x^2+xy-x-(y-1)^2

=2x^2+x(y-1)-(y-1)^2

=2a^2+ab-b^2         với a=x,b=y-1

=2a^2+2ab-ab-b^2

=(2a-b)(a+b)

=(2x-y+1)(x+y-1)

30 tháng 7 2018

a) ktra lại đề

b)  \(3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]\)

\(=3\left(x+y+z\right)\left(x+y-z\right)\)

c)  \(x^2-2xy+y^2-z^2+2zt-t^2=\left(x-y\right)^2-\left(z-t\right)^2=\left(x-y-z+t\right)\left(x-y+z-t\right)\)

d)  \(2x^2+4x-2-2y^2=2\left(x^2-y^2+2x-1\right)\)

e)  \(2xy-x^2-y^2+16=16-\left(x-y\right)^2=\left(4-x+y\right)\left(4+x-y\right)\)

f)  \(2x-2y-x^2+2xy-y^2=2\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(2-x+y\right)\)

g)  \(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)-4x^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

h)  \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2+x+1\right)\)

30 tháng 7 2018

câu đề là a)     x2 + 4x – y+ 4  nha

9 tháng 10 2020

Câu 1:

\(a^2+2ab+b^2-ac-bc\)

\(=\left(a+b\right)^2-c\left(a+b\right)\)

\(=\left(a+b\right)\left(a+b-c\right)\)

Câu 2:

\(5x^2-5y^2-10x+10y\)

\(=5\left(x-y\right)\left(x+y\right)-10\left(x-y\right)\)

\(=\left(x-y\right)\left(5x+5y-10\right)\)

\(=5\left(x-y\right)\left(x+y-2\right)\)

Câu 3:

\(3x^2-6xy+3y^2-12z^2\)

\(=3\left[\left(x-y\right)^2-4z^2\right]\)

\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)

9 tháng 10 2020

Câu 4:

\(x^4+x^3+x^2-1\)

\(=x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+x-1\right)\)

Câu 5:

\(x^3-3x^2+3x-1-y^3\)

\(=\left(x-1\right)^3-y^3\)

\(=\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right)y+y^2\right]\)

\(=\left(x-y-1\right)\left(x^2-2x+1+xy-y+y^2\right)\)

Câu 6:

\(x^4-x^2+2x-1\)

\(=x^4-\left(x-1\right)^2\)

\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)

Câu 7:

\(\left(x+y\right)^3-x^3-y^3\)

\(=\left(x+y\right)^3-\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]\)

\(=3xy\left(x+y\right)\)

30 tháng 7 2018

b, \(3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2\right)-3z^2\)

\(=3\left(x+y\right)^2-3z^2=3\left(x+y+z\right)\left(x+y-z\right)\)

c,\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)=\left(x-y\right)^2-\left(z-t\right)^2\)

\(=\left(x-y+z-t\right)\left(x-y-z+t\right)\)

e,\(=-\left(x^2-2xy+y^2-16\right)=-\left[\left(x-y\right)^2-16\right]\)

\(=-\left(x-y-4\right)\left(x-y+4\right)\)

f, \(=2\left(x-y\right)-\left(x^2-2xy+y^2\right)=2\left(x-y\right)-\left(x-y\right)^2\)

\(=\left(x-y\right)\left(2-x+y\right)\)

g,\(=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2+2-2x\right)\left(x^2+2x+2\right)\)

h,\(=x^3+x^2+x^2+x+x+1=x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

30 tháng 7 2018

câu đề là a) x2 + 4x – y2 + 4 nha

AH
Akai Haruma
Giáo viên
25 tháng 7 2017

Lời giải:

Ta có: \(\left\{\begin{matrix} (xy+1)(2y-x)=2x^3y^2\\ x^2y^2+1=2y^2\end{matrix}\right.\Rightarrow (xy+2y^2-x^2y^2)(2y-x)=2x^3y^2\)

\(\Leftrightarrow y[(x+2y-x^2y)(2y-x)-2x^3y]=0\)

Hiển nhiên \(y\neq 0\) , do đó \((x+2y-x^2y)(2y-x)=2x^3y\)

\(\Leftrightarrow -x^2+4y^2-2x^2y^2+x^3y=2x^3y\)

\(\Leftrightarrow -x^2+4y^2=x^3y+2x^2y^2\)

\(\Leftrightarrow (2y+x)(2y-x-x^2y)=0\)

TH1: \(2y+x=0\rightarrow x=-2y\)

Thay vào PT $(2)$ suy ra \(4y^4+1=2y^2\leftrightarrow 3y^4+(y^2-1)^2=0\) (vô nghiệm)

TH2: \(2y-x=x^2y\) thay vào PT $(1)$ suy ra

\((xy+1)x^2y=2x^3y^2\leftrightarrow x^2y(xy+1-2xy)=x^2y(1-xy)=0\)

\(y\neq 0\rightarrow \) \(x=0\) hoặc \(xy=1\)

\(\bullet\) \(x=0\rightarrow \text{PT(1)}\rightarrow y=0 \) (vl)

\(xy=1\)\(\Rightarrow \text{PT(2)}\rightarrow y=\pm 1\rightarrow x=\pm 1\) (thử lại thấy đúng)

Vậy \((x,y)=(-1,-1),(1,1)\)