Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình viết xuôi theo dạng ax2 + bx + c nhé ;-; cho dễ làm
a) 2x2 + 7x + 3 = 2x2 + x + 6x + 3 = x( 2x + 1 ) + 3( 2x + 1 ) = ( 2x + 1 )( x + 3 )
b) 3x2 - 8x + 4 = 3x2 - 6x - 2x + 4 = 3x( x - 2 ) - 2( x - 2 ) = ( x - 2 )( 3x - 2 )
c) 3x2 - 7x + 2 = 3x2 - 6x - x + 2 = 3x( x - 2 ) - ( x - 2 ) = ( x - 2 )( 3x - 1 )
d) -6x2 + 7x - 2 = -6x2 + 3x + 4x - 2 = -3x( 2x - 1 ) + 2( 2x - 1 ) = ( 2x - 1 )( 2 - 3x )
e) -3x2 + 7x - 2 = -3x2 + 6x + x - 2 = -3x( x - 2 ) + ( x - 2 ) = ( x - 2 )( 1 - 3x )
f) 2x2 - 5x + 2 = 2x2 - 4x - x + 2 = 2x( x - 2 ) - ( x - 2 ) = ( x - 2 )( 2x - 1 )
g) 3x2 - 8x + 4 = 3x2 - 6x - 2x + 4 = 3x( x - 2 ) - 2( x - 2 ) = ( x - 2 )( 3x - 2 )
h) 6x2 - 11x + 3 = 6x2 - 2x - 9x + 3 = 2x( 3x - 1 ) - 3( 3x - 1 ) = ( 3x - 1 )( 2x - 3 )
i) 2x2 + 3x - 27 = 2x2 - 6x + 9x - 27 = 2x( x - 3 ) + 9( x - 3 ) = ( x - 3 )( 2x + 9 )
j) 4x2 - 5x + 1 = 4x2 - 4x - x + 1 = 4x( x - 1 ) - ( x - 1 ) = ( x - 1 )( 4x - 1 )
a. x3+5x2+3x-9
= x3-x2+6x2-6x+9x-9
= x2(x-1)+6x(x-1)+9(x-1)
= (x2+6x+9)(x-1)
= (x+3)2(x-1)
b. x3+9x2+11x-21
= x3-x2+10x2-10x+21x-21
= x2(x-1)+10x(x-1)+21(x-1)
= (x2+10x+21)(x-1)
= (x+7)(x+3)(x-1)
c. x3-7x+6
= x3-x2+x2-x-6x+6
= x2(x-1)+x(x-1)-6(x-1)
= (x2+x-6)(x-1)
= (x+3)(x-2)(x-1)
d. x3-5x2+8x-4
= x3-x2-4x2+4x+4x-4
= x2(x-1)-4x(x-1)+4(x-1)
= (x2-4x+4)(x-1)
= (x-2)2(x-1)
e. x3-3x+2
= x3+2x2-2x2-4x+x+2
= x2(x+2)-2x(x+2)+(x+2)
= (x2-2x+1)(x+2)
= (x-1)2(x+2)
f. x3+8x2+17x+10
= x3+5x2+3x2+15x+2x+10
= x2(x+5)+3x(x+5)+2(x+5)
= (x2+3x+2)(x+5)
= (x+1)(x+2)(x+5)
g. x3+3x2+6x+4
= x3+x2+2x2+2x+4x+4
= x2(x+1)+2x(x+1)+4(x+1)
= (x2+2x+4)(x+1)
h. x3-2x-4
= x3-2x2+2x2-4x+2x-4
= x2(x-2)+2x(x-2)+2(x-2)
= (x2+2x+2)(x-2)
k. x3+x2+4
= x3+2x2-x2-2x+2x+4
= x2(x+2)-x(x+2)+2(x+2)
= (x2-x+2)(x+2)
l. x3-12x+7x-2
= x3+2x2-2x2-4x-x-2
= x2(x+2)-2x(x+2)-(x+2)
= (x2-2x-1)(x+2)
Hãy tích cho tui đi
khi bạn tích tui
tui không tích lại bạn đâu
THANKS
a, 3x3-8x2+8x-5
= x2(3x-5)-x(3x-5)+3x-5
=(3x-5)(x2-x+1)
b, 4x3-3x2+5x-21
= x2(4x-7) +x(4x-7)+3(4x-7)
=(4x-7)(x2+x+3)
Phương pháp chung để PTĐTTNT dạng \(ax^2+bx+c\):
Nháp: Ta kiểm tra xem \(b^2-4ac\) có âm hay không. Nếu âm thì ta không thể PTĐTTNT, nếu không âm thì bạn tìm 2 số \(m,n\) để \(\left\{{}\begin{matrix}m+n=-\dfrac{b}{a}\\mn=\dfrac{c}{a}\end{matrix}\right.\)
Một đặc điểm cần lưu ý là khi \(ac< 0\) thì đa thức luôn phân tích được thành nhân tử.
Khi đã tìm được m, n rồi thì ta viết vào bài làm:
\(ax^2+bx+c=a\left(x^2+\dfrac{b}{a}x+\dfrac{c}{a}\right)\) \(=a\left(x^2-mx-nx+mn\right)\) \(=a\left[x\left(x-m\right)-n\left(x-m\right)\right]=a\left(x-m\right)\left(x-n\right)\)
Mẫu: \(2x^2+9x-5\), ta nhận thấy \(2\left(-5\right)< 0\) (thỏa mãn)
Ta sẽ tìm 2 số m, n thỏa mãn \(\left\{{}\begin{matrix}m+n=-\dfrac{9}{2}\\mn=-\dfrac{5}{2}\end{matrix}\right.\). Ta nhẩm được \(\left\{{}\begin{matrix}m=-5\\n=\dfrac{1}{2}\end{matrix}\right.\). Như vậy ta viết vào bài làm:
\(2x^2+9x-5=2\left(x^2+\dfrac{9}{2}x-\dfrac{5}{2}\right)\) \(=2\left(x^2-5x+\dfrac{1}{2}x-\dfrac{5}{2}\right)=2\left[x\left(x-5\right)+\dfrac{1}{2}\left(x-5\right)\right]\) \(=2\left(x-5\right)\left(x+\dfrac{1}{2}\right)\)
Ta thấy xuất hiện \(\dfrac{1}{2}\), hơi xấu nhỉ? Trong trường hợp mà phân tích xong nó ra xấu như này thì đem số \(a\) ta đặt ra ngoài vào trong ngoặc chứa phân số là xong ngay.
\(=\left(x-5\right)\left(2x+1\right)\)
Vậy \(2x^2+9x-5=\left(x-5\right)\left(2x+1\right)\)
Chúc bạn học tốt!