Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) 2x^2 + 7x - 15
2x^2 + 10x - 3x -15
2x(x+5) - 3(x+5)
(x+5)(2x-3)
a, 5x^3y - 10x^2y^2 + 5xy^3 = 5xy. ( x^2 - 2xy + y^2) = 5xy.( x-y)^2
b, 2x^2 + 7x -15 = 2x^2 + 10X - 3x -15
= 2x( x+5) - 3( x+5)
= ( 2x-3) (x+5)
Câu 1:
\(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{\left(x-7\right)\left(x-3\right)}{\left(x-7\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)
\(\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}=\dfrac{2x^2-6x+5x-15}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{\left(2x+5\right)\left(x-3\right)}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)
Do đó: \(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}\)
a) \(x^2-2x-15\)
\(\Leftrightarrow x^2-2x+1-16\)
\(\Leftrightarrow\left(x-1\right)^2-4^2\)
\(\Leftrightarrow\left(x-5\right)\left(x-3\right)\)
\(a,x^2-2x-15=\left(x^2-2x+1\right)-16.\)
\(=\left(x-1\right)^2-4^2\)
\(=\left(x-5\right)\left(x+3\right)\)
Câu 2 nha
\(a,x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(c,x^2-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
mk ghi đáp án, còn lại bạn tự biến đổi
a) \(2x^3-x^2+5x+3=\left(2x+1\right)\left(x^2-x+3\right)\)
b) \(x^3+5x^2+8x+4=\left(x+1\right)\left(x+2\right)^2\)
c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
d) \(4x^4+1=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)
e) \(x^4-7x^3+14x^2-7x+1=\left(x^2-4x+1\right)\left(x^2-3x+1\right)\)
mk làm chi tiết theo yêu của của người hỏi đề:
a) \(2x^3-x^2+5x+3\)
\(=\left(2x^3-2x^2+6x\right)+\left(x^2-x+3\right)\)
\(=2x\left(x^2-x+3\right)+\left(x^2-x+3\right)\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
b) \(x^3+5x^2+8x+4\)
\(=\left(x^3+4x^2+4x\right)+\left(x^2+4x+4\right)\)
\(=x\left(x^2+4x+4\right)+\left(x^2+4x+4\right)\)
\(=\left(x+1\right)\left(x^2+4x+4\right)\)
\(=\left(x+1\right)\left(x+2\right)^2\)
a. \(x^2-2x-3=x^2+x-3x-3=x\left(x+1\right)-3\left(x+1\right)=\left(x-3\right)\left(x+1\right)\)
b. \(x^2-4xy+3y^2=x^2-xy-3xy+3y^2=x\left(x-y\right)-3y\left(x-y\right)=\left(x-3y\right)\left(x-y\right)\)
c. \(x^2-5x-24=\left(x-8\right)\left(x+3\right)\)
e. \(2x^4+7x^2+3\)
\(=2x^4+x^2+6x^2+3\)
\(=x^2\left(2x^2+1\right)+3\left(2x^2+1\right)\)
\(=\left(x^2+3\right)\left(2x^2+1\right)\)
a) 5x2 - 5xy + 7y - 7x = ( 5x2 - 5xy ) - ( 7x - 7y ) = 5x( x - y ) - 7( x - y ) = ( x - y )( 5x - 7 )
b) x2 - y2 + 2x + 1 = ( x2 + 2x + 1 ) - y2 = ( x + 1 )2 - y2 = ( x - y + 1 )( x + y + 1 )
c) 3x2 + 6xy + 3y2 - 3z2 = 3( x2 + 2xy + y2 - z2 ) = 3[ ( x2 + 2xy + y2 ) - z2 ] = 3[ ( x + y )2 - z2 ] = 3( x + y - z )( x + y + z )
d) ab( x2 + y2 ) + xy( a2 + b2 ) = abx2 + aby2 + a2xy + b2xy
= ( a2xy + abx2 ) + ( aby2 + b2xy )
= ax( ay + bx ) + by( ay + bx )
= ( ay + bx )( ax + by )
a) \(x^3-2x^2-6x+12\)
\(=x^2\left(x-2\right)-6\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-6\right)\)
\(=\left(x-2\right)\left(x-\sqrt{6}\right)\left(x+\sqrt{6}\right)\)
b) \(x^4-7x^2+12\)
\(=x^4-3x^2-4x^2+12\)
\(=x^2\left(x^2-3\right)-4\left(x^2-3\right)\)
\(=\left(x^2-3\right)\left(x^2-4\right)\)
\(=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-2\right)\left(x+2\right)\)
c) \(x^2-5x+4\)
\(=x^2-x-4x+4\)
\(=x\left(x-1\right)-4\left(x-1\right)\)
\(=\left(x-1\right)\left(x-4\right)\)
d) \(3x^2+5x+2\)
\(=3x^2+3x+2x+2\)
\(=3x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(3x+2\right)\)
e) \(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2 -1\right]\)
\(=\left(x+y\right)\left(x^2+y^2+2xy-1\right)\)
a) \(x^2+8x+15=x^2+3x+5x+15=\left(x+3\right)\left(x+5\right)\)
b) \(x^2+3x+2=x^2+2x+x+2=\left(x+1\right)\left(x+2\right)\)
c) \(-x^2+7x-6=-x^2+x+6x-6=\left(-x+6\right)\left(x-1\right)\)
d) \(5x^3y-10x^2y^2+5xy^3=5xy\left(x^2-2xy+y^2\right)=5xy\left(x-y\right)^2\)
e) \(2x^2+7x-15=2x^2-3x+10x-15=\left(2x-3\right)\left(x+5\right)\)