Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+6x^3+12x^2+8x\)
\(=x\left(x^3+6x^2+12x+8\right)\)
\(=x\left(x+2\right)^3\)
8x + 12x2 + 6x3 + x4
= x4 + 6x3 + 12x2 + 8x
= x(x3 + 6x2 + 12x + 8)
= x ( x + 2 ) 3
\(f, x^3+3x^2+6x+4\)
\(=x^3+x^2+2x^2+2x+4x+4\)
\(=x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x+4\right)\)
\(g, x^3-5x^2+8x-4\)
\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x-2\right)^2\)
\(3x^4+6x^3-7x^2+8x-10\)
\(=\left(3x^4-3x^3\right)+\left(9x^3-9x^2\right)+\left(2x^2-2x\right)+\left(10x-10\right)\)
\(=\left(x-1\right)\left(3x^3+9x^2+2x+10\right)\)
x3 + 7x - 6=x2 . x + 7x - 22 + 2 = (x2 - 22) + (x+7x)+2=(x-2) . (x+2) + 8x + 2
x3 - 5x + 8x - 4=x2 . x -5x + 8x -22 = (x2 - 22) . (x -5x + 8x )=(x-2) . (x+2) . 4x
x3 - 9x2 + 6x + 16=x2 . x - 9x2 + 6x + 16 = (x2 - 9x2) . (x+6x) + 16=(x-9x) . (x+9x) . 7x + 16
k mk nha
b mk thấy nó sai đề sao ý
c) \(C=\left(x^2+x+4\right)^2+8x\left(x^2+x+4\right)+15x^2\)
\(=\left(x^2+x+4\right)^2+2.4x.\left(x^2+x+4\right)+16x^2-x^2\)
\(=\left(x^2+x+4+4x\right)^2-x^2\)
\(=\left(x^2+5x+4\right)^2-x^2\)
\(=\left(x^2+5x+4-x\right)\left(x^2+5x+4+x\right)=\left(x^2+4x+4\right)\left(x^2+6x+4\right)\)
a, 25-x2+4xy-4y2
= 25-(x2-4xy+4y2)
= 52-(x-2y)2
= (5-x+2y)(5+x-2y)
Các biểu thức sau bạn tự chứng minh nhé
\(C=x^3+5x^2+8x+4\)
\(=x^3+x^2+4x^2+4x+4x+4\)
\(=x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x^2+4x+4\right)\left(x+1\right)\)
\(=\left(x+2\right)^2.\left(x+1\right)\)
\(D=x^3-x^2-4\)
\(=x^3-2x^2+x^2-2x+2x-4\)
\(=x^2\left(x-2\right)+x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x^2+x+2\right)\left(x-2\right)\)
Chúc bạn học tốt.
\(f,x^3+3x^2+6x+4=x^3+x^2+2x^2+2x+4x+4\)
\(=x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x+4\right)\)
\(g,x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4\)
\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x-2\right)^2\)