Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2+6xy+9y^2-3x-9y+2
=( x^2+6xy+9y^2)-3(x+3y)+9/4 -1/4
=(x+3y)^2-3(x+3y)+(3/2)^2- 1/4
=(x+3y+3/2)^2-(1/2)^2
=(x+3y+3/2+1/2)(x+3y+3/2-1/2)=(x+3y+2)(x+3y+1)
a)\(x^2-6xy+9y^2-25z^2=\left[x^2-2.x.3y+\left(3y\right)^2\right]-\left(5z\right)^2\)
\(=\left(x-3y\right)^2-\left(5z\right)^2=\left(x-3y-5z\right)\left(x-3y+5z\right)\)
b)\(xyz+x^2yz-6yz=yz\left(x^2+x-6\right)=yz\left(x^2+3x-2x-6\right)\)
\(=yz\left[x\left(x+3\right)-2\left(x+3\right)\right]=yz\left(x-2\right)\left(x+3\right)\)
a.x2-6xy+9y2-25z2
= ( x2-6xy+9y2)-25z2
= [x2-2x3y+(3y)2]-25z2
= (x-3y)2-252
= (x-3y+25)(x-3y-25)
a)\(x^2-6xy+9y^2=x^2-2\cdot x\cdot3y+\left(3y\right)^2=\left(x-3y\right)^2\)
b) \(\left(x^2+1\right)^2-4x^2\)
\(=\left(x^2+1+2x\right)\left(x^2+1-2x\right)\)
\(=\left(x+1\right)^2\left(x-1\right)^2\)
a) ( x-3y ) ( x + 1 )
b) ( x+y+5 ) ( x+y-5 )
c) ( x-5 ) ( x+2 )
Hk tốt
a) 2x3 + 6xy - x2z - 3yz
= ( 2x3 + 6xy ) - ( x2z + 3yz )
= 2x( x2 + 3y ) - z( x2 + 3y )
= ( x2 + 3y )( 2x - z )
b) x2 - 6xy + 9y2 - 49
= ( x2 - 6xy + 9y2 ) - 49
= ( x - 3y )2 - 72
= ( x - 3y - 7 )( x - 3y + 7 )
c) x3 + 4x2 + 16x + 64
= ( x3 + 4x2 ) + ( 16x + 64 )
= x2( x + 4 ) + 16( x + 4 )
= ( x + 4 )( x2 + 16 )
a) =(2x^3-x^2z)+(6xy-3yz)
=x^2(2x-z)+3y(2x-z)
=(x^2+3y)(2x-z)
b) =(x^2-6xy+9y^2)-7^2
=(x-3y)^2-7^2
=(x-3y+7)(x-3y-7)
c) =(x^3+4x^2)+(16x+64)
=x^2(x+4)+16(x+4)
=(x^2+16)(x+4)
a) 7(x-y)
b) (x-3y)2
c) xy(x+y)-(x+y)=(xy-1)(x+y)
d) x2-3x+2x-6=x(x-3)+2(x-3)=(x+2)(x-3)
=x^2(y+9)-y^2(y+9)
=(x^2-y^2)(y+9)
=(x-y)(x+y)(y+9)
học tốt
Phân tích các đa thức thành nhân tử:
a. x6-y6
b.x35+x34+x33+.......+x2+x+1
c.x2-6xy+9y2-9
e.(x-9)(x-7)+1
Ta có : x35 + x34 + x33 +.......+ x2 + x + 1
= (x35 + x34 ) + (x33 + x32) +.......+ (x3 + x2) + (x + 1)
= x34(x + 1) + x32(x + 1) + .... + x2(x + 1) + (x + 1)
= (x + 1) ( x34 + x32 + ..... + x2 + 1)
Ta có : (x - 9)(x - 7) + 1
= x2 - 16x + 63 + 1
= x2 - 16x + 64
= x2 - 2.x.8 + 82
= (x - 8)2
=x^2 + 2 * x * 3y + (3y)^2
=(x + 3y)^2