Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+5x^3+10x-4\)
\(=x^4+5x^3-2x^2+2x^2+10x-4\)
\(=x^2\left(x^2+5x-2\right)+2\left(x^2+5x-2\right)\)
\(=\left(x^2+2\right)\left(x^2+5x-2\right)\)
Mình cũng vừa làm được cách 2:
\(x^4+5x^3+10x-4\)
=\(x^4-4+5x^3+10x\)
=\(\left(x^2+2\right)\left(x^2-2\right)+5x\left(x^2+2\right)\)
=\(\left(x^2+2\right)\left(x^2+5x-2\right)\)
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
Mình xin lỗi nhé, để mình sửa lại : ^^
a) \(x^4+3x^2+4=\left(x^4+x^3+2x^2\right)+-\left(x^3+x^2+2x\right)+2\left(x^2+2x+2\right)\)
\(=x^2\left(x^2+x+2\right)-x\left(x^2+x+2\right)+2\left(x^2+x+2\right)=\left(x^2-x+2\right)\left(x^2+x+2\right)\)
b) \(x^4+5x^2+9=\left(x^4+x^3+3x^2\right)-\left(x^3+x^2+3x\right)+3\left(x^2+x+3\right)\)
\(=x^2\left(x^2+x+3\right)-x\left(x^2+x+3\right)+3\left(x^2+x+3\right)=\left(x^2-x+3\right)\left(x^2+x+3\right)\)
\(B=x^8+2x^5-2x^4+x^2-2x-100+10x\left(x^4+x\right)+\left(5x-1\right)^2\)
\(=x^8+2x^5-2x^4+x^2-2x-100+10x^5+25x^2-10x+1\)
\(=x^8+12x^5-2x^4+36x^2-12x-99\)
\(=x^8+6x^5+9x^4+6x^5+36x^2+54x-11x^4-66x-99\)
\(=x^4\left(x^4+6x+9\right)+6x\left(x^4+6x+9\right)-11\left(x^4+6x+9\right)\)
\(=\left(x^4+6x+9\right)\left(x^4+6x-11\right)\)
\(C=x^3+5x^2+8x+4\)
\(=x^3+x^2+4x^2+4x+4x+4\)
\(=x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x^2+4x+4\right)\left(x+1\right)\)
\(=\left(x+2\right)^2.\left(x+1\right)\)
\(D=x^3-x^2-4\)
\(=x^3-2x^2+x^2-2x+2x-4\)
\(=x^2\left(x-2\right)+x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x^2+x+2\right)\left(x-2\right)\)
Chúc bạn học tốt.
x4 + 2x3 + 5x2 + 4x -12=0
<=> x4 - x3 + 3x3 - 3x2 + 8x2 - 8x + 12x - 12 = 0
<=> ( x4 - x3 ) + ( 3x3 - 3x2 ) + ( 8x2 - 8x ) + ( 12x - 12 ) = 0
<=> ( x - 1 ) ( x3 + 3x2+ 8x +12) = 0
<=> ( x -1 ).[ ( x3 + 2x2 ) + ( x2 + 2x ) + ( 6x +1) ] = 0
<=>( x - 1). ( x + 2 ).( x2 + x + 6 ) = 0
<=> x = 1 hoặc x = -2
\(x^4-5x^2+4=x^4-x^2-4x^2+4\)
\(=\left(x^2-1\right)\left(x^2+1\right)-4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+1-4\right)=\left(x^2-1\right)\left(x^2-3\right)\)
\(x^4-5x^2+4\)
\(\Leftrightarrow x^4-x^2-4x^2+4\)
\(\Leftrightarrow\left(x^2-1\right).\left(x^2+1\right)-4\left(x^2-1\right)\)
\(\Leftrightarrow\left(x^2-1\right).\left(x^2+1-4\right)\)
\(\Leftrightarrow\left(x^2-1\right).\left(x^2-3\right)\)
Chúc bạn học tốt !