Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(36-4a^2+20ab-25b^2=6^2-\left(4a^2-20ab+25b^2\right)\)
\(=6^2-\left[\left(2a\right)^2-2.2a.5b+\left(5b\right)^2\right]\)
\(=6^2-\left(2a-5b\right)^2\)
\(=\left(6-2a+5b\right)\left(6+2a-5b\right)\)
b)\(a^3+3a^2+3a+1-27b^3=\left(a+1\right)^3-\left(3b\right)^3\)(chỗ này mình sửa 27b2 thành 27b3 vì mình nghĩ nhầm đề)
\(=\left(a+1-3b\right)\left[\left(a+1\right)^2+\left(a+1\right)3b+\left(3b\right)^2\right]\)
\(=\left(a+1-3b\right)\left(a^2+2a+1+3ab+3b+9b^2\right)\)
c)\(x^3+3x^2+3x+1-3x^2-3x=\left(x+1\right)^3-3x\left(x+1\right)\)
\(=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)\)
\(a^3-3a+3b-b^3=\left(a^3-b^3\right)-3\left(a-b\right)=\left(a-b\right)\left(a^2+b^2+ab-3\right)\)
\(x^2-2014x+2013=x^2-2013x-x+2013=x\left(x-2013\right)-\left(x-2013\right)=\left(x-2013\right)\left(x-1\right)\)
a3 - 3a + 3b - b3
= ( a3 - b3 ) - ( 3a - 3b )
= ( a - b )( a2 + ab + b2 ) - 3( a - b )
= ( a - b )( a2 + ab + b2 - 3 )
x2 - 2014x + 2013
= x2 - 2013x - x + 2013
= x( x - 2013 ) - ( x - 2013 )
= ( x - 2013 )( x - 1 )
2, a^3-3ab^2 = 5
<=> (a^3-3ab^2)^2 = 25
<=> a^6-6a^4b^2+9a^2b^4 = 25
b^3-3a^2b=10
<=> (b^3-3a^2b)^2 = 100
<=> b^6-6a^2b^4+9a^4b^2 = 100
=> 100+25 = a^6-6a^4b^2+9a^2b^4+b^6+6a^2b^4+9a^4b^2
<=> 125 = a^6+3a^4b^2+3a^3b^4+b^6 = (a^2+b^2)^3
<=> a^2+b^2 = 5
Khi đó : S = 2016.(a^2+b^2) = 2016.5 = 10080
Tk mk nha
1) \(x^2+6xy+5y^2-5y-x=\left(x^2+xy-x\right)+\left(5xy+5y^2-5y\right)\)
\(=x\left(x+y-1\right)+5y\left(x+y-1\right)\)
\(=\left(x+5y\right)\left(x+y-1\right)\)
2) Ta có : \(a^3-3ab^2-5\Rightarrow\left(a^3-3ab^2\right)^2=25\Rightarrow a^6-6a^4b^2+9a^2b^4=25\)
và \(b^3-3a^2b=10\Rightarrow\left(b^3-3a^2b\right)^2=100\Rightarrow b^6-6b^4a^2+9a^4b^2=100\)
\(\Rightarrow\)\(125=a^6+b^6+3a^2b^4+3a^4b^2\)
Hay \(125=\left(a^2+b^2\right)^2\Rightarrow a^2+b^2=5\)
Nên \(S=2016\left(a^2+b^2\right)=2016.5=10080\)
1) \(x^2+6xy+5y^2-5y-x\)
\(=\left(x^2-xy+x\right)+\left(5xy+5y^2-5y\right)\)
\(=x\left(x+y-1\right)+5y\left(x+y-1\right)\)
\(\left(x+5y\right)\left(x+y-1\right)\)
2) Ta có : \(a^3-3ab^2=5\)
\(\Rightarrow\)\(\left(a^3-3ab^2\right)^2-100=25\Rightarrow a^6-6a^4b^2+9a^2b^4=25\)
Và \(b^3-3a^2b=10\)
\(\Rightarrow\)\(\left(b^3-3a^2b\right)^2=100\Rightarrow b^6-6b^4a^2-9a^4b^2=100\)
\(\Rightarrow\)\(125=a^6+b^6+3a^2b^4+3a^4b^2\)
Hoặc \(125=\left(a^2+b^2\right)^3\Rightarrow a^2+b^2=5\)
Do đó : \(S=2016\left(a^2+b^2\right)=2016.5=10080\)
a) 3a2-6ab+3b2-12c2
=3.(a2-2ab+b2-4c2)
=3.[(a-b)2-4c2]
=3.(a-b-2c)(a-b+2c)
a/ 3(a + b) + c(a + b) = (a + b)(3 + c)
b/ (a - b)2 - c2 = (a - b - c)(a - b + c)