Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(-9x^2+12xy-4y^2\)
\(=-\left(9x^2-12xy+4y^2\right)\)
\(=-\left[\left(3x\right)^2-2\cdot3x\cdot2y+\left(2y\right)^2\right]\)
\(=-\left(3x-2y\right)^2\)
b) Ta có: \(-125a^3+75a^2-15a+1\)
\(=\left(-5a\right)^3+3\cdot\left(-5a\right)^2\cdot1+3\cdot\left(-5a\right)\cdot1^2+1^3\)
\(=\left(-5a+1\right)^3\)
\(=\left(1-5a\right)^3\)
c) Ta có: \(64-96a+48a^2-8a^3\)
\(=4^3-3\cdot4^2\cdot2a+3\cdot4\cdot\left(2a\right)^2-\left(2a\right)^3\)
\(=\left(4-2a\right)^3\)
\(=\left[2\cdot\left(2-a\right)\right]^3\)
\(=8\left(2-a\right)^3\)
d) Ta có: \(-\frac{1}{8}m^3n^6-\frac{1}{27}\)
\(=-\left(\frac{1}{8}m^3n^6+\frac{1}{27}\right)\)
\(=-\left[\left(\frac{1}{2}mn^2\right)^3+\left(\frac{1}{3}\right)^3\right]\)
\(=-\left(\frac{1}{2}mn^2+\frac{1}{3}\right)\left(\frac{1}{4}m^2n^4-\frac{1}{6}mn^2+\frac{1}{9}\right)\)
\(16^4+y^4=\left[\left(y^2\right)^2+2.y^2.16^2+\left(16^2\right)^2\right]-2.y^2.16^2=\left(y^2+16^2\right)^2-2.y^2.16^2\)
b tự tính tiếp nhé
ý b tương tự. ( gợi ý: thêm bớt hạng tử 16y^4 )
\(y^8+64\)
\(=\left(y^4\right)^2+2\cdot y^4\cdot8+8^2-2\cdot y^4\cdot8\)
\(=\left(y^4+8\right)^2-16y^4\)
\(=\left(y^4+8\right)^2-\left(4y^2\right)^2\)
\(=\left(y^4+8-4y^2\right)\left(y^4+8+4y^2\right)\)
a kudo shinichi làm rồi đó
8a3 - 36a2b + 54ab2 - 27b3 - 8
= ( 8a3 - 36a2b + 54ab2 - 27b3 ) - 8
= ( 2a - 3b )3 - 23
= ( 2a - 3b - 2 )[ ( 2a - 3b )2 + 2( 2a - 3b ) + 4 ]
= ( 2a - 3b - 2 )( 4a2 - 12ab + 9b2 + 4a - 6b + 4 )
bài a) bn trên đã dẫn link cho bn r
bài b)
Đặt x-y=a;y-z=b;z-x=c
\(=>a+b+c=x-y+y-z+z-x=0\)
\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=a^3+b^3+c^3\)
Theo câu a)\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\) (do a+b+c=0)
\(=>a^3+b^3+c^3=3abc=>\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
a) Ta có :
\(a^3+b^3+c^3-3abc\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b^2\right)-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
P/s tham khảo nha
hok tốt
a)\(\left(a^3-b^3\right)+\left(a-b\right)^2\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)
\(\left(a-b\right)\left(a^2+ab+b^2+a-b\right)\)
b) \(\left(8a^3-27b^3\right)-2a\left(4a^2-9b^2\right)\)
\(=\left(2a-3b\right)\left(4a^2+6ab+9b^2\right)-2a\left(2a-3b\right)\left(2a+3b\right)\)
\(=\left(2a-3b\right)\left(4a^2+6ab+9b^2-4a^2-6ab\right)\)
\(=\left(2a-3b\right)\cdot9b^2\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)+a^2-2ab+b^2\)
= ...........
a) `64-96a+48a^2-8a^3`
`=-(8a^3-48a^2+96a-64)`
`=-[(2a)^3 - 3.(2a)^2 .4 + 3.2a.4^2 - 4^3]`
`=-(2a-4)^3`
b) `-m^3n^6-8`
`=-(m^3n^6+8)`
`=-[(mn^2)^3+2^3]`
`=-(mn^2+2)(m^2n^4-2mn^2+4)`.