\(x^4+25x^2+20x-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(x^4+25x^2+20x-4\)

\(=x^4-5x^3+2x^2+5x^3-25x^2+10x-2x^2+10x-4\)

\(=x^2\left(x^2-5x+2\right)+5x\left(x^2-5x+2\right)-2\left(x^2-5x+2\right)\)

\(=\left(x^2-5x+2\right)\left(x^2+5x-2\right)\)

b: \(=x^4-6x^2-x^2+9\)

\(=\left(x^2-3\right)^2-x^2\)

\(=\left(x^2-x-3\right)\left(x^2+x-3\right)\)

c: \(=abx^2+aby^2-a^2xy-b^2xy\)

\(=\left(abx^2-b^2xy\right)+\left(aby^2-a^2xy\right)\)

\(=xb\left(ax-by\right)+ay\left(by-ax\right)\)

\(=\left(ax-by\right)\cdot\left(xb-ay\right)\)

5 tháng 10 2020

a) 5x2 - 5xy + 7y - 7x = ( 5x2 - 5xy ) - ( 7x - 7y ) = 5x( x - y ) - 7( x - y ) = ( x - y )( 5x - 7 )

b) x2 - y2 + 2x + 1 = ( x2 + 2x + 1 ) - y2 = ( x + 1 )2 - y2 = ( x - y + 1 )( x + y + 1 )

c) 3x2 + 6xy + 3y2 - 3z2 = 3( x2 + 2xy + y2 - z2 ) = 3[ ( x2 + 2xy + y2 ) - z2 ] = 3[ ( x + y )2 - z2 ] = 3( x + y - z )( x + y + z )

d) ab( x2 + y2 ) + xy( a2 + b2 ) = abx2 + aby2 + a2xy + b2xy

                                                = ( a2xy + abx2 ) + ( aby2 + b2xy )

                                                = ax( ay + bx ) + by( ay + bx )

                                                = ( ay + bx )( ax + by )

26 tháng 8 2021

Trả lời:

1) sửa đề:  \(x^4+x^3-4x-4=x^3\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x^3-4\right)\)

2) \(x^2-\left(a+b\right)x+ab=x^2-ax-bx+ab=\left(x^2-ax\right)-\left(bx-ab\right)\)

\(=x\left(x-a\right)-b\left(x-a\right)=\left(x-a\right)\left(a-b\right)\)

3)  \(5xy^3-2xyz-15y^2+6z=\left(5xy^3-15y^2\right)-\left(2xyz-6z\right)\)

\(=5y^2\left(xy-3\right)-2z\left(xy-3\right)=\left(xy-3\right)\left(5y^2-2z\right)\)

10 tháng 10 2018

a) 9  -(x-y)2

= 32 - (x-y)2

= (3-x+y).(3+x-y)

b) (x2 +4)2 - 16x2

= (x2+4)2 - (4x)2

= (x2 + 4 -4x).(x2 + 4 +4x)

10 tháng 10 2018

      \(9-\left(x-y\right)^2\)

\(=3^2-\left(x-y\right)^2\)

\(=\left(3-x+y\right)\left(3+x-y\right)\)

      \(\left(x^2+4\right)^2-16x^2\)

\(=\left(x^2+4\right)^2-\left(4x\right)^2\)

\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)

\(=\left(x-2\right)^2\left(x+2\right)^2\)

trong sách 

nâng cao và 

phát triển toán 8

kìa

26 tháng 7 2018

Thì tui mới phải xin cách làm 

31 tháng 10 2020

a) Đặt: x = a- b; y = b - c ; z = c- a 

Ta có: x + y + z = 0 

=> \(A=x^3+y^3+z^3=3xyz+\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=3xyz\)

=> \(A=3xyz=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

b) Đặt: \(a=x^2-2x\) 

Ta có: \(B=a\left(a-1\right)-6=a^2-a-6=\left(a+2\right)\left(a-3\right)=\left(x^2-2x+2\right)\left(x^2-2x-3\right)\)

\(=\left(x^2-2x+2\right)\left(x+1\right)\left(x-3\right)\)

d) \(D=4\left(x^2+2x-8\right)\left(x^2+7x-8\right)+25x^2\)

Đặt: \(x^2-8=t\)

Ta có: \(D=4\left(t+2x\right)\left(t+7x\right)+25x^2\)

\(=4t^2+36xt+81x^2=\left(2t+9x\right)^2\)

\(=\left(2x^2+9x-16\right)^2\)

27 tháng 10 2019

a. Câu hỏi của nguyễn khánh linh - Toán lớp 8 - Học toán với OnlineMath

7 tháng 7 2016

a)  \(\left(x+y\right)^5-x-y=\left(x+y\right)^5-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^4-1\right]\)

\(\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)     #áp dụng hàng đẳng thức#

c) \(x^9-x^7-x^6-x^5+x^4+x^3+x^2+1\)nhóm vào là đc

b) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(y^2+z^2\right)^3\)

=\(\left(y^2+x^2\right)\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)+\left(z^2-x^2\right)^2\right]+\left(y^2+z^2\right)^3\)

\(\left(y^2+z^2\right)\left[x^4+y^4+2x^2y^2-x^2z^2+x^4-y^2z^2+x^2y^2+z^4+x^4-2x^2z^2+y^4+z^4+2y^2z^2\right]\)

=\(=\left(y^2+z^2\right)\left(2x^4+2y^4+2z^4+3x^2y^2-3x^2z^2+y^2z^2\right)\)

7 tháng 7 2016

câu a ko phải -x-y mà là -x^5-y^5 bạn à