Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Bắp Ngô - Toán lớp 8 - Học toán với OnlineMath
Tham khảo
bài a) bn trên đã dẫn link cho bn r
bài b)
Đặt x-y=a;y-z=b;z-x=c
\(=>a+b+c=x-y+y-z+z-x=0\)
\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=a^3+b^3+c^3\)
Theo câu a)\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\) (do a+b+c=0)
\(=>a^3+b^3+c^3=3abc=>\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
a) Ta có :
\(a^3+b^3+c^3-3abc\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b^2\right)-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
P/s tham khảo nha
hok tốt
a) \(x^2+2x+1=x^2+x+x+1=x\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x+1\right)=\left(x+1\right)^2\) *Câu này có thể áp dụng hằng đẳng thức \(a^2+2ab+b^2=\left(a+b\right)^2\) cho nhanh*
b) \(a^3-b^3+c^3+3abc=\left(a^3-3a^2b+3ab^2-b^2\right)+3a^2b-3ab^2+c^3+3abc\)
\(=\left(a-b\right)^3+c^3+\left(3a^2b-3ab^2+3abc\right)\)
\(=\left(a-b+c\right)\left[\left(a-b\right)^2-\left(a-b\right)c+c^2\right]+3ab\left(a-b+c\right)\)
\(=\left(a-b+c\right)\left(a^2-2ab+b^2-ac+bc+c^2+3ab\right)\)
\(=\left(a-b+c\right)\left(a^2+b^2+c^2-ac+bc+ab\right)\)
c) \(a^3-b^3-c^3-3abc=\left[a^3-3a^2b+3ab^2-b^3\right]+3a^2b-3ab^2-c^3-3abc\)
\(=\left[\left(a-b\right)^3-c^3\right]+3ab\left(a-b-c\right)=\left(a-b-c\right)\left[\left(a-b\right)^2+\left(a-b\right)c+c^2\right]+3ab\left(a-b-c\right)\)
\(=\left(a-b-c\right)\left[a^2-2ab+b^2+ac-bc+c^2+3ab\right]=\left(a-b-c\right)\left(a^2+b^2+c^2+ab+ac-bc\right)\)
a,(x+1)2
b,(a+c-b).{(a+c)^2+(a+c)b+b^2-3ac}
c,(a-c-b).{(a-c)^2+(a-c)b+b^2+3ac}
Ta có : \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)
\(=\left(a+b+c\right)\text{[}\left(a+b\right)^2-\left(a+b\right).c+c^2\text{ }\text{]}-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
a^3+b^3+c^3−3abc
=a^3+3ab(a+b)+b^3+c^3−3abc−3ab(a+b)
=(a+b)^3+c^3−3ab(a+b+c)
=(a+b+c)(a^2+2ab+b^2−ab−ac+c^2)−3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)
a^3 + b^3 + c^3 - 3abc
= ( a+ b)^3 - 3ab ( a+ b) - 3abc
= ( a+ b +c )^3 - 3 ( a + b ).c(a + b +c ) -3ab (a+ b ) -3abc
= ( a+ b +c)^3 - 3(a+b).c(a+b+c) - 3ab(a+b+c)
= ( a+ b +c )[ ( a + b +c )^2 - 3(a+b).c - 3ab ]
= ( a+ b + c ) [ a^2 + 2ab + b^2 + 2bc+ c^2 +2 ac - 3ac - 3bc - 3ab )
= ( a + b + c)(a^2 + b^2 + c^2 -ab - bc- ca)
Tick đúng nha
a) \(a^3+b^3-c^3+3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)-c^3+3abc\)
\(=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]-3ab\left(a+b-c\right)\)
\(=\left(a+b-c\right)\left(a^2+2ab+b^2+ca+bc+c^2-3ab\right)\)
\(=\left(a+b-c\right)\left(a^2+b^2+c^2-ab+bc+ca\right)\)
b) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left(x+y+z-x\right)\left[\left(x+y+z\right)^2+\left(x+y+z\right)x+x^2\right]-\left(y+z\right)\left(y^2-yz+z^2\right)\)
\(=\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)+x^2+xy+zx+x^2-y^2+yz-z^2\right]\)
\(=\left(y+z\right)\left(3x^2+3xy+3yz+3zx\right)\)
\(=3\left(y+z\right)\left[x\left(x+y\right)++z\left(x+y\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(a)a^3+b^3-c^3+3abc=\left(a+b\right)^3-3ab\left(a+b\right)-c^3+3abc\)
\(=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]-3ab\left(a+b-c\right)\)
\(=\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab+bc+ac\right)\)
Ta có : x3 + 2x2 + x
= x3 + x2 + x2 + x
= x2(x + 1) + x(x + 1)
= (x2 + x) (x + 1)
= x(x + 1)(x + 1)
\(a^3+b^3+c^3-3abc\)
\(=a^3+3ab\left(a+b\right)+b^3+c^3-3abc-3ab\left(a+b\right)\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ab-ac+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Chúc bạn học tốt nha!!
\(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3ab\)
\(=\left[\left(a+b\right)+c\right]\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)
a3+b3+c3−3abca3+b3+c3−3abc
=a3+3ab(a+b)+b3+c3−3abc−3ab(a+b)=a3+3ab(a+b)+b3+c3−3abc−3ab(a+b)
=(a+b)3+c3−3ab(a+b+c)=(a+b)3+c3−3ab(a+b+c)
=(a+b+c)(a2+2ab+b2−ab−ac+c2)−3ab(a+b+c)=(a+b+c)(a2+2ab+b2−ab−ac+c2)−3ab(a+b+c)
=(a+b+c)(a2+b2+c2−ab−bc−ca)=(a+b+c)(a2+b2+c2−ab−bc−ca)
Câu hỏi của Hiền Nguyễn - Toán lớp 8 - Học toán với OnlineMath