Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, x2 - 2x + 1 - y2
= ( x - 1)2 - y2
= (x - 1 - y)(x - 1 + y )
b, x2 - 5x + 6
= x2 -2x - 3x + 6
= x ( x - 2) - 3( x-2)
= (x - 2)(x - 3)
( x^2-2x )+ (1- y^2)
= x (x - 2 ) + (1-y ) (1+y)
B.
= x^2-2x-3x+6
=x (x -2 ) - 3 (x-2 )
=(x-3) (x-2)
4x4 + 4x3 + 5x2 + 2x +1
= (4x4 + 4x3 + x2 ) + ( 2x2 + 1 ) + 1
= x2(2x + 1 )2 + 2x(2x + 1) +1
= (x(2x + 1 ) + 1)2
= (2x + x + 1)2
4x4+4x3+5x2+2x+1
=(4x4+4x3+x2) + (2x2+1) +1
= x2(2x+1)2 + 2x(2x+1) +1
= (x(2x+1)+1)2
=(2x2+x+1)2
\(2x^2\left(x-1\right)+3x^2-3x-2x+2.\)
\(2x^2\left(x-1\right)+3x\left(x-1\right)-2\left(x-1\right)\)
\(\left(x-1\right)\left(2x^2+3x-2\right)\)
\(2\left(x-1\right)\left(x^2+\frac{3}{2}x-2\right)=2\left(x-1\right)\left\{\left(x^2+\frac{2x.3}{4}+\frac{9}{16}\right)-\left(2+\frac{9}{16}\right)\right\}\)
\(2\left(x-1\right)\left\{\left(x+\frac{3}{4}\right)^2-\left(2+\frac{9}{16}\right)\right\}=2\left(x-1\right)\left\{\left(x+\frac{3}{4}-2-\frac{9}{16}\right)\left(x+\frac{3}{4}+2+\frac{9}{16}\right)\right\}\)
\(=2x^3+4x^2-3x^2-6x+x+2\)
= \(2x^2\left(x+2\right)-3x\left(x+2\right)+\left(x+2\right)\)
= \(\left(x+2\right)\left(2x^2-3x+1\right)\)
= \(\left(x+2\right)\left(2x^2-x-2x+1\right)\)
= \(\left(x+2\right)\left(2x\left(x-1\right)-\left(x-1\right)\right)\)
= \(\left(x+2\right)\left(x-1\right)\left(2x-1\right)\)
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
Ta có:\(2x^3-x^2+5x+3=2x^3+x^2-2x^2-x+6x+3=2x^2\left(x+0,5\right)-2x\left(x+0,5\right)+6\left(x+0,5\right)=\left(2x^2-2x+6\right)\left(x+0,5\right)\)