K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2016

Ta có : \(x^3+2x^2-2x-12=\left(x-2\right)\left(ax^2+bx+c\right)\)

\(\Leftrightarrow x^3+2x^2-2x-12=ax^3+bx^2+cx-2ax^2-2bx-2c\)

\(\Leftrightarrow x^3+2x^2-2x-12=ax^3+\left(b-2a\right)x^2+\left(c-2b\right)x-2c\)

Từ đây có các liên hệ : \(\begin{cases}1=a\\2=b-2a\\-2=c-2b\\-12=-2c\end{cases}\)

Từ các liên hệ này , ta tính ra :

\(a=1;c=6;b=4\)

Kết quả : \(g\left(x\right)=\left(x-2\right)\left(x^2+4x+6\right)\)

 

22 tháng 10 2016

\(x^3+2x^2-2x-12=\left(x^3+4x^2+6x\right)+\left(-2x^2-8x-12\right)=\left(x-2\right)\left(x^2+4x+6\right)\)

 

3 tháng 8 2017

có ai ko ?? giúp mình với

21 tháng 11 2018

(*)\(3x^2-11x+6=3x^2-2x-9x+6=x\left(3x-2\right)-3\left(3x-2\right)=\left(x-3\right)\left(3x-2\right)\)

(*)\(x^2-6x+5=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-5\right)\left(x-1\right)\)

(*)\(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2=\left(x^2+1+x\right)\left(x^2+1-x\right)\)

(*)\(x^4-4x^2+3=x^4-x^2-3x^2+3=x^2\left(x^2-1\right)-3\left(x^2-1\right)=\left(x+1\right)\left(x-1\right)\left(x^2-3\right)\)

(*)\(6x^2+7xy+2y^2=6x^2+4xy+3xy+2y^2=2x\left(3x+2y\right)+y\left(3x+2y\right)=\left(2x+y\right)\left(3x+2y\right)\)

21 tháng 11 2018

a, \(3x^2-11x+6=3x^2-2x-9x+6=x\left(3x-2\right)-3\left(3x-2\right)=\left(3x-2\right)\left(x-3\right)\)

b, \(x^2-6x+5=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-1\right)\left(x-5\right)\)

c, \(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

d, \(x^4-4x^2+3=x^4-4x^2+4-1=\left(x^2-2\right)^2-1=\left(x^2-1\right)\left(x^2-3\right)=\left(x+1\right)\left(x-1\right)\left(x^2-3\right)\)

e, \(6x^2+7xy+2y^2=6x^2+3xy+4xy+2y^2=3x\left(2x+y\right)+2y\left(2x+y\right)=\left(2x+y\right)\left(3x+2y\right)\)

5 tháng 3 2019

x^5+2x^4+2x^3+2x^2+2x+1

=(x^5+x^4)+(x^4+x^3)+(x^3+x^2)+(x^2+x)+(x+1)

=x^4(x+1)+x^3(x+1)+x^2(x+1)+x(x+1)+(x+1)

=(x+1)(x^4+x^3+x^2+x+1)

31 tháng 1 2019

\(6x^4-11x^2+3=6x^4-9x^2-2x^2+3\)

\(=3x^2\left(2x^2-3\right)-\left(2x^2-3\right)=\left(2x^2-3\right)\left(3x^2-1\right)\)