K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2020

\(a^4+a^2+1=a^4-a^3+a^2+\left(a^3+1\right)\)

\(=a^2\left(a^2-a+1\right)+\left(a+1\right)\left(a^2-a+1\right)\)

\(=\left(a^2-a+1\right)\left(a^2+a+1\right)\)

11 tháng 9 2020

Cách 2 lun: 

\(a^4+a^2+1=\left(a^4+2a^2+1\right)-a^2\)

\(=\left(a^2+1\right)^2-a^2=\left(a^2+a+1\right)\left(a^2-a+1\right)\)

16 tháng 8 2018

\(\left(x+1\right)^4+\left(x^2+x+1\right)^2\)

\(=2x^4+6x^3+9x^2+6x+2\)(bạn nhân phá ngoặc rồi thu gọn nhé)

\(=\left(2x^4+2x^3+x^2\right)+\left(4x^3+4x^2+2x\right)+\left(4x^2+4x+2\right)\)

\(=x^2\left(2x^2+2x+1\right)+2x\left(2x^2+2x+1\right)+2\left(2x^2+2x+1\right)\)

\(=\left(x^2+2x+2\right)\left(2x^2+2x+1\right)\)

4 tháng 10 2016

..........................

4 tháng 10 2016

a)\(a^4+a^3+a^3b+a^2b=\left(a^4+a^3b\right)+\left(a^3+a^2b\right)\)

\(=a^3\left(a+b\right)+a^2\left(a+b\right)\)

\(=\left(a^3+a^2\right)\left(a+b\right)\)

\(=a^2\left(a+1\right)\left(a+b\right)\)

b)\(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)

\(=\left[\left(x-y+4\right)-\left(2x+3y-1\right)\right]\left[\left(x-y+4\right)+\left(2x+3y-1\right)\right]\)

\(=\left(x-y+4-2x-3y+1\right)\left(x-y+4+2x+3y-1\right)\)

\(=\left(-x-4y+5\right)\left(4x+2y+3\right)\)

c)\(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)

\(=x^2\left(y-z\right)+y^2\left(z-y+y-x\right)+z^2\left(x-y\right)\)

\(=x^2\left(y-z\right)-y^2\left(y-z\right)-y^2\left(x-y\right)+z^2\left(x-y\right)\)

\(=\left(y-z\right)\left(x^2-y^2\right)-\left(x-y\right)\left(y^2-z^2\right)\)

\(=\left(y-z\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)\left(y-z\right)\left(y+z\right)\)

\(=\left(y-z\right)\left(x-y\right)\left(x+y-y-z\right)\)

\(=\left(y-z\right)\left(x-y\right)\left(x-z\right)\)

(a-b) (c-a) (c-b) (c2+b c+a c+b2+a b+a2)

16 tháng 8 2018

Bài này trên mạng cũng có mà.

2 tháng 8 2018

a)  \(x\left(x+4\right)\left(x-4\right)-\left(x^2-1\right)\left(x^2+1\right)\)

\(=x\left(x^2-16\right)-\left(x^4-1\right)\)

\(=x^3-16x-x^4+1\)

bạn ktra lại đề

b)  \(x^4+2x^3+5x^2+4x-12\)

\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)

\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)

\(=\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)

2 tháng 8 2018

Ủa pạn có thể giải ại cái bước thứ 2 đc ko ạk

10 tháng 7 2017

\(x^5+x^4+1\)

\(=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)

\(=x^3.\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)

10 tháng 7 2017

cảm ơn bạn nhiều, không biết còn cách không? Mong nhận đượ giúp đỡ!

\(x^4-x^3-x^2+1\)

\(\text{ Phân tích thành nhân tử}\)

\(\left(x-1\right)\left(x^3-x-1\right)\)

\(-x-y^2+x^2-y\)

\(\text{ Phân tích thành nhân tử}\)

\(\left(-\left(y-x+1\right)\right)\left(y+x\right)\)

\(x^2-y^2-x-y\)

\(\text{ Phân tích thành nhân tử}\)

\(\left(-\left(y-x+1\right)\right)\left(y+x\right)\)

\(x^2-y^2+4-4x\)

\(\text{ Phân tích thành nhân tử}\)

\(\left(-\left(y-x+2\right)\right)\left(y-x+2\right)\)