K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2017

a)  a2 + b2 + 2ab + 2a + 2b + 1

= (a2 + b2 + 2ab) + (2a + 2b) + 1

= (a + b)2 + 2(a + b) + 1

= (a + b + 1)2

b)  a3 - 3a + 3b - b3

= (a3 - b3) - (3a - 3b)

= (a - b)(a2 - ab + b2) - 3(a - b)

= (a - b)(a2 - ab + b2 - 3)

c)  x2 + 2x - 15

= (x2 + 2x + 1) - 16

= (x + 1)2 - 16

= (x + 1 - 5)(x + 1 + 5)

= (x - 4)(x + 6)

d)  a4 + 6a2b + 9b2 - 1

= (a2 + 3b)2 - 1

= (a2 + 3b - 1)(a2 + 3b + 1)

19 tháng 12 2016

lớp 8 á mik học lớp 6

19 tháng 12 2016

phân tích đa thức thành nhân tử

a/x2(x+1)-2x(x+1)+(x+1)=(x+1)(x^2-2x+1)=(x+1)(x-1)^2

b/a2+b2+2a-2b-2ab=(a^2-ab)+(b^2-ab)+2(a-b)=a(a-b)-b(a-b)+2(a-b)=(a-b)(a-b+2)

c/ 4x2-8x+3=(2x-2)^2-1=(2x-2-1)(2x-2+1)=(2x-3)(2x-1)

d/25-16x2=5^2-(4x)^2=(5-4x)(5+4x)

6 tháng 9 2017

\(3y^2\left(a-3x\right)-a\left(a-3x\right)=\left(3y^2-a\right)\left(a-3x\right)\)

27 tháng 6 2018

4/ a/ Ta có \(x^2-2xy+y^2+a^2=\left(x-y\right)^2+a^2\)

Mà \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\a^2\ge0\end{cases}}\)=> \(\left(x-y\right)^2+a^2\ge0\)

=> \(x^2-2xy+y^2+a^2\ge0\)

Vậy \(x^2-2xy+y^2\)chỉ nhận những giá trị không âm.

b/ Ta có \(x^2+2xy+2y^2+2y+1=\left(x^2+2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x+y\right)^2+\left(y+1\right)^2\)

Mà \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}}\)=> \(\left(x+y\right)^2+\left(y+1\right)^2\ge0\)

=> \(x^2+2xy+2y^2+2y+1\ge0\)

Vậy \(x^2+2xy+2y^2+2y+1\)chỉ nhận những giá trị không âm.

c/ Ta có \(9b^2-6b+4c^2+1=\left(3b-1\right)^2+4c^2\)

Mà \(\hept{\begin{cases}\left(3b-1\right)^2\ge0\\4c^2\ge0\end{cases}}\)=> \(\left(3b-1\right)^2+4c^2\ge0\)

=> \(9b^2-6b+4c^2+1\ge0\)

Vậy \(9b^2-6b+4c^2+1\)chỉ nhận những giá trị không âm.

d/ Ta có \(x^2+y^2+2x+6y+10=\left(x+1\right)^2+\left(y+3\right)^2\)

Mà \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)=> \(\left(x+1\right)^2+\left(y+3\right)^2\ge0\)

=> \(x^2+y^2+2x+6y+10\ge0\)

Vậy \(x^2+y^2+2x+6y+10\)chỉ nhận những giá trị không âm.

1/

a/ \(x^4-y^4=\left(x^2-y^2\right)\)

b/ \(\left(a+b\right)^3-\left(a-b\right)^3=\left(a+b-a+b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

                                                  \(=2b\left[a^2+2ab+b^2-\left(a^2-b^2\right)+\left(a^2-2ab+b^2\right)\right]\)

                                                  \(=2b\left(a^2+b^2\right)\)

c/ \(\left(a^2+2ab+b^2\right)+\left(a+b\right)\)

\(\left(a+b\right)^2+\left(a+b\right)\)

\(\left(a+b\right)\left(a+b+1\right)\)

18 tháng 12 2018

Phân tích đa thức thành nhân tử
a) (1-2x)(1+2x)-x(x+2)(x-2)

\(=1-4x^2-x\left(x^2-4\right)\)

\(=1-4x^2-x^3+4x\)

\(=\left(1-x^3\right)+\left(4x-4x^2\right)\)

\(=\left(1-x\right)\left(1+x+x^2\right)+4x\left(1-x\right)\)

\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)

\(=\left(1-x\right)\left(x^2+5x+1\right)\)

18 tháng 12 2018

\(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)

\(=a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)

\(=a^4+6a^3b+12a^2b^2+8b^3a-8a^3b-12a^2b^2+6ab^3-b^4\)

\(=a^4+6a^3b+8b^3a-8a^3b-6ab^3-b^4\)

\(=\left(a^4-b^4\right)+\left(6a^3b-6ab^3\right)+\left(8b^3a-8a^3b\right)\)

\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a^2-b^2\right)+8ab\left(b^2-a^2\right)\)

\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a-b\right)\left(a+b\right)-8ab\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3+6a^2b+6ab^2-8a^2b-8ab^2\right)\)

\(=\left(a-b\right)\left(a^3-a^2b-ab^2+b^3\right)\)

\(=\left(a-b\right)\left[a^2\left(a-b\right)-b^2\left(a-b\right)\right]\)

\(=\left(a-b\right)^3\left(a+b\right)\)

12 tháng 9 2020

A = x2 - 20x - 125

= x2 + 5x - 20x - 125

= x( x + 5 ) - 25( x + 5 )

= ( x + 5 )( x - 25 )

B = 12x2 - 2x - 4

= 12x2 + 6x - 8x - 4

= 6x( x + 2 ) - 4( x + 2 )

= ( x + 2 )( 6x - 4 )

C = 3a2 - 5ab - 12b2

= 3a2 - 9ab + 4ab - 12b2

= 3a( a - 3b ) + 4b( a - 3b )

= ( a - 3b )( 3a + 4b )

D = 25ab - 6a2 + 9b2

= 9b2 + 27ab - 2ab - 6a2

= 9b( b + 3a ) - 2a( b + 3a )

= ( b + 3a )( 9b - 2a )

4 tháng 7 2017

a, \(3a^2b^2-6a^2b^3+3a^2b^2\)

\(=6a^2b^2-6a^2b^3=6a^2b^2\left(1-b\right)\)

b, \(a^{n+1}-2a^{n-1}=a^2.a^{n-1}-2a^{n-1}=a^{n-1}\left(a^2-2\right)\)

c, \(3a^2b\left(a+b-2\right)-4ac^2-4bc^2+8c^2\)

\(=3a^2b\left(a+b-2\right)-4c^2\left(a+b-2\right)\)

\(=\left(3a^2b-4c^2\right)\left(a+b-2\right)\)

c, \(5a^n\left(a^2-ab+1\right)-2a^2b^n+2ab^{n+1}-2b^n\)

\(=5a^n\left(a^2-ab+1\right)-2a^2b^n+2ab^n.b-2b^n\)

\(=5a^n\left(a^2-ab+1\right)-2b^n\left(a^2-ab+1\right)\)

\(=\left(5a^n-2b^n\right)\left(a^2-ab+1\right)\)