K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2016

để mik kb cho.mik cũng đang buồn nè. nhớ đồng ý nhaaaaa

undefined

Câu c đề sai thì phải bạn ạ.

a) \(27+x^3=\left(x+3\right)\left(x^2-3x+9\right)\)

b) \(-x^3+12x^2-48x+64=\left(4-x\right)^3\)

c) \(27+27x+9x^2=9\left(x^2+3x+3\right)\)

30 tháng 10 2018

\(=\left(12x+9x^2+4\right)-\left(6y\right)^2=\left(3x+2\right)^2-\left(6y\right)^2\)

\(=\left(3x+2-6y\right)\left(3x+2+6y\right)\)

k mình cái

30 tháng 10 2018

12x+9x2+4-36y2

= (9x2+12x+4)-36y2

= (3x+2)2-36y2

= ((3x+2)-6y2)((3x+2)+6y2)

=(3x+2-6y2)(3x+2+6y2)

a) \(27x^3+27x^2+9x+1=\left(3x+1\right)^3\)

b) \(-x^3-3x^2-3x-1=-\left(x^3+3x^2+3x+1\right)=-\left(x+1\right)^3\)

c) \(-8+12x-6x^2+x^3=\left(x-2\right)^3\)

23 tháng 7 2021

\(=9x^3-3x^2-9x^2+6x-1\)1

\(=3x^2\left(3x-1\right)-\left(9x^2-6x+1\right)\)

\(=3x^2\left(3x-1\right)-\left(3x-1\right)^2\)

\(=\left(3x-1\right)\left(3x^2-3x+1\right)\)

25 tháng 12 2021
-6xy mũ 2 + 6x mũ 3 + 12x mũ 2 + 6x

a) x2 - 7x + 5 = ( x2 - 2 . 7/2 . x + 49 / 4 ) + 5 - 49 / 4 
= (x - 7/2)^2 - 29/4
= (x - 7/2)^2 - (√ 29 / 2 )^2
= ( x - ( 7 + √ 29 / 2 )). ( x + ( 7 - √ 29 / 2 ))

11 tháng 8 2021

1. \(x^3+2x^2-6x-27=\left(x-3\right)\left(x^2+5x+9\right)\)

2. \(9x^2+6x-4y^2-4y=\left(9x^2-4y^2\right)+\left(6x-4y\right)\)

\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)=\left(3x-2y\right)\left(3x+2y+2\right)\)

3. \(12x^3+4x^2-27x-9=4x^2\left(3x+1\right)-9\left(3x+1\right)\)

\(=\left(3x+1\right)\left(x^2-\dfrac{9}{4}\right)=\left(x+\dfrac{1}{3}\right)\left(x+\dfrac{3}{2}\right)\left(x-\dfrac{3}{2}\right)\)

1) Ta có: \(x^3+2x^2-6x-27\)

\(=\left(x-3\right)\left(x^2+3x+9\right)+2x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+5x+9\right)\)

2: Ta có: \(9x^2+6x-4y^2-4y\)

\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)\)

\(=\left(3x-2y\right)\left(3x+2y+2\right)\)

24 tháng 8 2020

x4 - 9x3 + 28x2 - 36x + 16

Thử với x = 4 ta có :

44 - 9.43 + 28.42 - 36.4 + 16 = 0

Vậy 4 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì đa thức trên chia hết cho x - 4

Thực hiện phép chia đa thức cho x - 4 ta được x3 - 5x2 + 8x - 4

Vậy ta phân tích được ( x - 4 )( x3 - 5x2 + 8x - 4 )

Tiếp tục : Thử x = 2 với x3 - 5x2 + 8x - 4

Ta có : 23 - 5.22 + 8.2 - 4 = 0 

Vậy 2 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì x3 - 5x2 + 8x - 4 chia hết cho x - 2

Thực hiện phép chia  x3 - 5x2 + 8x - 4 cho x - 2 ta được x2 - 3x + 2

Vậy ta phân tích được ( x - 4 )( x - 2 )( x2 - 3x + 2 )

x2 - 3x + 2 = x2 - x - 2x + 2 

                  = x( x - 1 ) - 2( x - 1 )

                  = ( x - 2 )( x - 1 )

Vậy : x4 - 9x3 + 28x2 - 36x + 16 = ( x - 4 )( x - 2 )( x - 2 )( x - 1 ) = ( x - 4 )( x - 2 )2( x - 1 )

24 tháng 8 2020

a. \(x^4-9x^3+28x^2-36x+16\)

\(=x^4-8x^3+20x^2-16x-x^3+8x^2-20x+16\)

\(=x\left(x^3-8x^2+20x-16\right)-\left(x^3-8x^2+20x-16\right)\)

\(=\left(x-1\right)\left(x^3-8x^2+20x-16\right)\)

\(=\left(x-1\right)\left(x^3-6x^2+8x-2x^2+12x-16\right)\)

\(=\left(x-1\right)\left[x\left(x^2-6x+8\right)-2\left(x^2-6x+8\right)\right]\)

\(=\left(x-1\right)\left(x-2\right)\left(x^2-6x+8\right)\)

\(=\left(x-1\right)\left(x-2\right)\left(x^2-2x-4x+8\right)\)

\(=\left(x-1\right)\left(x-2\right)\left[x\left(x-2\right)-4\left(x-2\right)\right]\)

\(=\left(x-1\right)\left(x-2\right)^2\left(x-4\right)\)