Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^4+2013x^2+2012x+2013\)
\(=x^4+2013x^2-x+2013x+2013\)
\(=\left(x^4-x\right)+\left(2013x^2+2013x+2013\right)\)
\(=x\left(x^3-1\right)+2013\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2013\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left\{x\left(x-1\right)+2013\right\}\)
\(=\left(x^2+x+1\right)\left(x^2-x+2013\right)\)
x^4+2013x^2+2012x+2013
=(x^4-x)+(2013x^2+2013x+2013)
=x(x^3-1)+2013(x^2+x+1)
=x(x-1)(x^2+x+1)+2013(x^2+x+1)
=(x^2+x+1)(x^2-x+2013)
chúc bạn học tốt ^ ^
\(x^4+2013x^2+2012x+2013\)
=\(x^4+2013x^2+2013x-x+2013\)
=\(\left(x^4-x\right)+\left(2013x^2+2013x+2013\right)\)
=\(x\left(x^3-1\right)+2013\left(x^2+x+1\right)\)
=\(x\left(x-1\right)\left(x^2+x+1\right)+2013\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^2-x+2013\right)\)
\(2012x^2-x-2013=0\)
\(\Rightarrow2012x^2+2012x-2013x-2013=0\)
\(\Rightarrow2012x\left(x+1\right)-2013\left(x+1\right)=0\)
\(\Rightarrow\left(2012x-2013\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2012x-2013=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{2013}{2012}\\x=-1\end{cases}}}\)
Chúc bạn học tốt.
ta có:
x^4+2014x^2+2013x+2014 = x^4+2013x^2+x^2+2013x+2013+1
=(x^4+x^2+1)+2013(x^2+x+1)
=(x^2+1)^2-x^2+2013(x^2+x+1)
=(x^2-x+1)(x^2+x+1)+2013(x^2+x+1)
=(x^2+x+1)(x^2+x+2014)
x4+2014x2+2013x+2014=(x4-x)+(2014x2+2014x+2014)
=x(x-1)(x2+x+1)+2014(x2+x+1)
=(x^2+x+1)(x2-x+2014)
b) \(\dfrac{5x-150}{50}+\dfrac{5x-102}{49}+\dfrac{5x-56}{48}+\dfrac{5x-12}{47}+\dfrac{5x-660}{46}=0\)
\(\Leftrightarrow\dfrac{5x-150}{50}-1+\dfrac{5x-102}{49}-2+\dfrac{5x-56}{48}-3+\dfrac{5x-12}{47}-4+\dfrac{5x-660}{46}+10=0\)
\(\Leftrightarrow\dfrac{5x-200}{50}+\dfrac{5x-200}{49}+\dfrac{5x-200}{48}+\dfrac{5x-200}{47}+\dfrac{5x-200}{46}=0\)
\(\Leftrightarrow\left(5x-200\right)\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{46}\right)=0\)
\(\Leftrightarrow5x-200=0\)
\(\Leftrightarrow x=40\)
b)
\(\dfrac{5x-150}{50}+\dfrac{5x-102}{49}+\dfrac{5x-56}{48}+\dfrac{5x-12}{47}+\dfrac{5x-660}{46}=0\)
\(\Rightarrow\left(\dfrac{5x-150}{50}-1\right)+\left(\dfrac{5x-102}{49}-2\right)+\left(\dfrac{5x-56}{48}-3\right)+\left(\dfrac{5x-12}{47}-4\right)\)
\(+\left(\dfrac{5x-660}{46}+10\right)=0\)
\(\Rightarrow\dfrac{5x-200}{50}+\dfrac{5x-200}{49}+\dfrac{5x-200}{48}+\dfrac{5x-200}{47}+\dfrac{5x-200}{46}=0\)
\(\Rightarrow\left(5x-200\right)\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{46}\right)=0\)
\(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{46}\ne0\)
\(\Rightarrow5x-200=0\Rightarrow x=40\)
x4+2012x2+2011x+2012
=(x4-x)+(2012x2+2012x+2012)
=x(x3-1)+2012(x2+x+1)
=x(x-1) (x2+x+1) + 2012 (x2+x+1)
=(x2+x+1) [x(x-1)+2012]
=(x2+x+1) (x2-x+2012)
1) \(\left(x^2+3x+1\right)^2-1=\left(x^2+3x\right)\left(x^2+3x+2\right)=x\left(x+3\right)\left[\left(x^2+2x\right)+\left(x+2\right)\right]\)
\(=x\left(x+3\right)\left[x\left(x+2\right)+\left(x+2\right)\right]=x\left(x+3\right)\left(x+1\right)\left(x+2\right)\)
2) \(x^4+2012x^2+2011x+2012\)
\(=\left(x^4-x\right)+\left(2012x^2+2012x+2012\right)\)
\(=x\left(x^3-1\right)+2012\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2012\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2012\right]\)
\(=\left(x^2+x+1\right)\left(x^2-x+2012\right)\)
Phân tích các đa thức sau thành nhân tử
a) (x+y+z)^3 - x^3 - y^3 - z^3
b) x^4 + 2012x^2 + 2011x + 2012
= x3 + y3 + z3 + 3x2yz + 3xy2z + 3xyz2 - x3 -y3 - z3
=3x2yz + 3xy2z + 3xyz2
= 3xyz( x + y + z)
b.
x^4+2012x^2+2012x-x+2012=
(x^4-x)+2012(x^2+x+1)=
x(x-1)(x^2+x+1)+2012(x^2+x+1)=
(x+2012)(x^2+x+1)
x4+2013x2+2012x+2013= (x4-x)+(2013x2+2013x+2013)
=x(x3-1)+2013(x2+x+1)
=x(x-1)(x2+x+1)+2013(x2+x+1)
=(x2+x+1)(x2-x+2013)