Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 12x2-3xy+8xz-2yz=3x(4x-y)+2z(4x-y)=(3x+2z)(4x-y)
b) x3+x2y-x2z-xyz=x(x2+xy-xz-yz)=x2(x+y-z-yz)
Phân tích đa thức thành nhân tử:
a) (x-1)(x-2)(x-3)(x-4)+1
b) (x2+3x+2)(x2+7x+12)+1
c) 12x2-3xy-8xz+2yz
a) \(A=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+1\)
\(A=\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]+1\)
\(A=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+1\)
Đặt \(a=x^2-5x+5\)
\(\Leftrightarrow A=\left(a-1\right)\left(a+1\right)+1\)
\(\Leftrightarrow A=a^2-1^2+1\)
\(\Leftrightarrow A=a^2\)
Thay \(a=x^2-5x+5\)vào A ta có :
\(A=\left(x^2-5x+5\right)^2\)
b) \(B=\left(x^2+3x+2\right)\left(x^2+7x+12\right)+1\)
\(B=\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)+1\)
\(B=\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x+3\right)+4\left(x+3\right)\right]+1\)
\(B=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
Làm tương tự câu a)
c) \(12x^2-3xy-8xz+2yz\)
\(=3x\left(4x-y\right)-2z\left(4x-y\right)\)
\(=\left(4x-y\right)\left(3x-2z\right)\)
a, \(12x^2-3xy-8xz+2yz=3x\left(4x-y\right)-2z\left(4x-y\right)=\left(4x-y\right)\left(3x-2z\right)\)
b: =(x^2+x)^2+3(x^2+x)+2-12
=(x^2+x)^2+3(x^2+x)-10
=(x^2+x+5)(x^2+x-2)
=(x^2+x+5)(x+2)(x-1)
a) Ta có: \(27m\left(m+n\right)-m-n\)
\(=27m\left(m+n\right)-\left(m+n\right)\)
\(=\left(m+n\right)\left(27m-1\right)\)
b) Ta có: \(15x\left(x-y\right)-25x+25y\)
\(=15x\left(x-y\right)-25\left(x-y\right)\)
\(=5\left(x-y\right)\left(3x-5\right)\)
c) Ta có: \(12x^2-3xy+8xz-2yz\)
\(=3x\left(4x-y\right)+2z\left(4x-y\right)\)
\(=\left(4x-y\right)\left(3x+2z\right)\)
d) Ta có: \(x^3+x^2y-x^2z-xyz\)
\(=x^2\left(x+y\right)-xz\left(x+y\right)\)
\(=x\left(x+y\right)\left(x-z\right)\)
Ta có (x^2 + y^2 )^3 + (z^2 – x^2 )^3 – (y^2 + z^2 )^3
= (x^2 + y^2 )^3 + (z^2 – x^2 )^3 + (-y^2 - z^2 )^3
Ta thấy x^2 + y^2 + z^2 – x^2 – y^2 – z^2 = 0
=> áp dụng nhận xét ta có: (x^2+y^2 )^3+ (z^2 -x^2 )^3 -y^2 -z^2 )^3
=3(x^2 + y^2 ) (z^2 –x^2 ) (-y^2 – z^2 )
= 3(x^2+y^2 ) (x+z)(x-z)(y^2+z^2 )
\((x^2+y^2)^3+(z^2-x^2)^3-(y^2+z^2)^3\)
\(=-3[x^4y^2-x^4z^2-x^2y^2z^2+x^2z^4-x^2y^4+x^2y^2z^2+y^4z^2-y^2z^4\)
\(=-3[x^2(x^2y^2-x^2z^2-z^2y^2+z^4)-y^2(x^2y^2-x^2z^2-z^2y^2+z^4)\)
\(=-3(x^2-y^2)(x^2y^2-x^2z^2-z^2y^2+z^4)\)
\(=-3(x^2-y^2[x^2(y^2-z^2)-z^2(y^2-z^2)]\)
\(=-3(x^2-y^2)(x^2-z^2)(y^2-z^2)\)
\(=-3(x-y)(x+y)(x-z)(x+z)(y+z)(y-z)\)
y(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)