Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- x2.(x3-x2+x-1)
- x.( x3-3x2-1)+3
- x.(x2-xy-y2)
Tìm x:
x3-16x = 0
=> x.(x2-16) = 0
=> x = 0 hay x2-16 = 0
=> x = 0 hay x2 = 0+16
=> x = 0 hay x2 = 16
=> x = 0 hay x = 4 hay x = -4
\(x^3+2x-3\)
\(=x^3-x+3x-3\)
\(=x\left(x^2-1\right)+3\left(x-1\right)\)
\(=x\left(x-1\right)\left(x+1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x\left(x+1\right)+3\right)\)
\(x^3+5x^2+8x+4\)
\(=\left(x+1\right)\left(x+2\right)\)
Cây cuối tương tự câu đầu thôi:
\(x^3-7x+6\)
\(=x^3-x-6x+6\)
.......
\(x^3-4x^2-8x+8\)
\(\Leftrightarrow\left(x^3-4x^2\right)-\left(8x-8\right)\)
\(\Leftrightarrow x^2\left(x-4\right)-4\left(x-4\right)\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-4\right)\)
- x3-5x2 +8x-4=x3-x2-4x2+4x+4x-4=x2(x-1)-4x(x-1)+4(x-1)=(x-1)(x2-4x+4)+(x-1)(x-2)2 +> x=1:2
x2-7x+12
=x2-3x-4x+12
=x(x-3)-4(x-3)
=(x-3)(x-4)
x4-4x2+4x-1
=x4-1-4x2+4x
=(x2-1)(x2+1)-4x(x-1)
=(x-1)(x+1)(x2+1)-4x(x-1)
=(x-1)[(x+1)(x2+1)-4x]
=(x-1)(x3+x2+x+1-4x)
=(x-1)(x3+x2-3x+1)
6x4-11x2+3
=6x4-2x2-9x2+3
=2x2(3x2-1)-3(3x2-1)
=(3x2-1)(2x2-3)
+,
= (x-y)^2 - z.(x-y) = (x-y).(x-y-z)
+,
=(x-y).(x+y)-(x-y) = (x-y).(x+y-1)
+,
=x^3.(x-1)-(x^2-1) = x^3.(x-1).(x-1).(x+1) = (x-1).(x^3-x-1)
+,
=a.(x^2-y^2)-7.(x+y) = a.(x+y).(x-y)-7.(x+y) = (ax+ay-7).(x+y)
\(x^2-2xy+y^2-xz+yz\)
\(=\left(x-y\right)^2-\left(xz-yz\right)\)
\(=\left(x-y\right)\left(x-y\right)-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
\(x^2-y^2-x+y\)
\(=\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-1\right)\)
\(x^4-x^3-x^2+1\)
\(=x^3\left(x-1\right)-\left(x^2-1\right)\)
\(=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x^3-x-1\right)\)
\(ax^2-ay^2-7x-7y\)
\(=a\left(x^2-y^2\right)-\left(7x+7y\right)\)
\(=a\left(x-y\right)\left(x+y\right)-7\left(x-y\right)\)
\(=\left(x-y\right)\left[a\left(x+y\right)-7\right]\)
Áp dụng tính chất \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\) ta đc
\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3\left(x+y\right)z\left(x+y+z\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-\left(x+y+z\right)\left(3xz-3yz-3xy\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xz-3yz-3xy\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+x^2+2xy+2yz+2xz-3xz-3yz-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)