Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(4x^2\left(x-2y\right)-\left(4x+1\right)\left(2y-x\right)\)
\(=4x^2\left(x-2y\right)+\left(4x+1\right)\left(x-2y\right)\)
\(=\left(x-2y\right)\left(4x^2+4x+1\right)\)
\(=\left(x-2y\right)\left(2x+1\right)^2\)
b/ \(x^2-ãx^2-y+ay+cx^2-cy\)
\(=\left(x^2-ax^2+cx^2\right)-\left(y-ay+cy\right)\)
\(=x^2\left(1-a+c\right)-y\left(1-a+c\right)\)
\(=\left(1-a+c\right)\left(x^2-y\right)\)
4x(x-2y)+8y(2y-x)
=4x(x-2y)-8y(x-2y)
=(4x-8y)(x-2y)
=4(x-2y)(x-2y)
=4(x-2y)^2
\(4x\left(x-2y\right)+8y\left(2y-x\right)\)
\(=\left(x-2y\right)\left(4x-8y\right)\)
\(=\left(x-2y\right)\left(x-2y\right).4\)\(=\left(x-2y\right)^2\)
\(\left(x+1\right)^4+\left(x^2+x+1\right)^2\)
\(=\left(x+1\right)^4+x^2\left(x+1\right)^2+2x\left(x+1\right)+1\)
\(=\left(x+1\right)^2.\left(2x^2+2x+1\right)+\left(2x^2+2x+1\right)\)
\(=\left(2x^2+2x+1\right)\left(x^2+2x+2\right)\)
a, \(=12x^5+9x^3y^2-6x^2y^3-20x^4y-15x^2y^3-10xy^4-24x^3y^2-18xy^4+12y^5\)
(tự rút gọn cái :P)
b, \(8x^3+4x^2y-2xy^2-y^3\)
\(=4x^2\left(2x+y\right)-y^2\left(2x+y\right)=\left(2x+y\right)^2\left(2x-y\right)\)
\(4x^2y^2-4x^2-4xy-y^2=4x^2y^2-\left(2x+y\right)^2\)
\(=\left(2x+y+2xy\right)\left(2xy-2x+y\right)\)
Mấy cái còn lại nhân tung ra là được mà :))))
d)\(\left(x^2+y^2-z^2\right)^2-4x^2y^2\)
\(=\left(x^2+y^2-z^2+2xy\right)\left(x^2+y^2-z^2-2xy\right)\)
\(=\left[\left(x^2+2xy+y^2\right)-z^2\right]\left[\left(x^2-2xy+y^2\right)-z^2\right]\)
\(=\left[\left(x+y\right)^2-z^2\right]\left[\left(x-y\right)^2-z^2\right]\)
\(=\left(x+y-z\right)\left(x+y+z\right)\left(x-y-z\right)\left(x-y+z\right)\)
e)Đặt \(x^2+3x=a\)
Có: \(\left(x^2+3x+1\right)\left(x^2+3x-3\right)-5\)
\(=\left(a+1\right)\left(a-3\right)-5\)
\(=a^2-3a+a-3-5\)
\(=a^2-2a-8\)
\(=a^2+2x-4x-8\)
\(=a\left(a+2\right)-4\left(a+2\right)\)
\(=\left(a+2\right)\left(a-4\right)\)
\(=\left(x^2+3x+2\right)\left(x^2+3x-4\right)\)
\(=\left(x^2+x+2x+2\right)\left(x^2-x+4x-4\right)\)
\(=\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x-1\right)+4\left(x-1\right)\right]\)
\(=\left(x+1\right)\left(x+2\right)\left(x-1\right)\left(x+4\right)\)
\(d,\left(x^2+y^2-z^2\right)^2-4x^2y^2\)
\(=\left(x^2+y^2-z^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2+y^2-z^2-2xy\right)\left(x^2+y^2-z^2+2xy\right)\)
\(=\left[\left(x^2-2xy+y^2\right)-z^2\right]\left[\left(x^2+2xy+y^2\right)-z^z\right]\)
\(=\left[\left(x-y\right)^2-z^2\right]\left[\left(x+y\right)^2-z^2\right]\)
\(=\left(x-y-z\right)\left(x-y+z\right)\left(x+y-z\right)\left(x+y+z\right)\)
\(e,\left(x^2+3x+1\right)\left(x^2+3x-3\right)-5\left(1\right)\)
\(\text{Đặt }x^2+3x+\frac{1-3}{2}=t\)
\(\text{hay }x^2+3x-2=t\left(2\right)\)
\(\left(1\right)\Leftrightarrow\left(t+3\right)\left(t-1\right)-5\)
\(\Rightarrow t^2-t+3t-3-5\)
\(=t^2+2t-8\)
\(=t^2-2t+4t-8\)
\(=t\left(t-2\right)+4\left(t-2\right)\)
\(=\left(t-2\right)\left(t+4\right)\left(3\right)\)
\(\text{Thay (2) vào (3),ta được:}\)
\(\left(x^2+3x-2-2\right)\left(x^2+3x-2+4\right)\)
\(=\left(x^2+3x-4\right)\left(x^2+3x+2\right)\)
\(=\left(x^2-x+4x-4\right)\left(x^2+x+2x+2\right)\)
\(=\left[x\left(x-1\right)+4\left(x-1\right)\right]\left[x\left(x+1\right)+2\left(x+1\right)\right]\)
\(=\left(x-1\right)\left(x+4\right)\left(x+1\right)\left(x+2\right)\)
Answer:
Câu đầu bạn xem lại.
\(\left(3x+4\right)^2+\left(4x-3\right)^2+\left(2+5x\right).\left(2-5x\right)\)
\(=\left(3x\right)^2+2.2x.4+4^2+\left(4x\right)^2-2.4x.3+3^2+2^2-\left(5x\right)^2\)
\(=9x^2+24x+16+16x^2-24x+9+4-25x^2\)
\(=\left(9x^2+16x^2-25x^2\right)+\left(24x-24x\right)+\left(16+9+4\right)\)
\(=29\)
\(\left(5x+y\right).\left(25x^2-5xy+y^2\right)-\left(5x-y\right).\left(25x^2+5xy+y^2\right)\)
\(=\left(5x+y\right).[\left(5x\right)^2-5x.y+y^2]-\left(5x-y\right).[\left(5x\right)^2+5x.y+y^2]\)
\(=\left(5x\right)^3+y^3-[\left(5x\right)^3-y^3]\)
\(=\left(5x\right)^3+y^3-\left(5x\right)^3+y^3\)
\(=2y^3\)
g ) \(4x^2\left(x-2y\right)-\left(4x+1\right)\left(2y-x\right)\)
\(=4x^2\left(x-2y\right)+\left(4x+1\right)\left(x-2y\right)\)
\(=\left(4x^2+4x+1\right)\left(x-2y\right)\)
\(=\left(2x+1\right)^2\left(x-2y\right)\)
h ) \(x^2-ax^2-y+ay+cx^2-cy\)
\(=x^2\left(1-a+c\right)-y\left(1-a+c\right)\)
\(=\left(x^2-y\right)\left(1-a+c\right)\)