Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,(x-y)^2-2(x+y)+1 b, x^2-y^2+4x+4 c, 4x^2-y^2+8(y-2)
=(x-y-1)^2 =(x^2+4x+4)-y^2 =4x^2-y^2+8y-16
=(x+2)^2-y^2 =4x^2-(y^2-8y+16)
=(x+2-y)(x+2+y) =4x^2-(y-4)^2
a) (x+y)2-2(x+y)+1=(x+y-1)2
b) x2-y2+4x+4 = (x2+4x+4)-y2=(x+2)2-y2=(x+y+2)(x-y+2)
c)4x2-y2+8(y-2) = 4x2-(y2-8y+16) = (2x)2-(y-4)2=(2x+y-4)(2x-y+4)
d)x3-2x2+2x-4 = x2(x-2)+2(x-2) = (x-2)(x2+2)
e)xy-4+2x-2y=x(y+2) - 2(y+2) = (x-2)(y+2)
k) \(x^3-x+3x^2+3xt^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)
h) \(a^3-a^2x-ay+xy\)
\(=a^2\left(a-x\right)-y\left(a-x\right)\)
\(=\left(a^2-y\right)\left(a-x\right)\)
Bài giải:
a) x3 + 2x2y + xy2– 9x = x(x2 +2xy + y2 – 9)
= x[(x2 + 2xy + y2) – 9]
= x[(x + y)2 – 32]
= x(x + y – 3)(x + y + 3)
b) 2x – 2y – x2 + 2xy – y2 = (2x – 2y) – (x2 – 2xy + y2)
= 2(x – y) – (x – y)2
= (x – y)[2 – (x – y)]
= (x – y)(2 – x + y)
c) x4 – 2x2 = x2(x2 – (√2)2) = x2(x - √2)(x + √2).
a) x3 + 2x2y + xy2– 9x = x(x2 +2xy + y2 – 9)
= x[(x2 + 2xy + y2) – 9]
= x[(x + y)2 – 32]
= x(x + y – 3)(x + y + 3)
b) 2x – 2y – x2 + 2xy – y2 = (2x – 2y) – (x2 – 2xy + y2)
= 2(x – y) – (x – y)2
= (x – y)[2 – (x – y)]
= (x – y)(2 – x + y)
c) x4 – 2x2 = x2(x2 – (√2)2) = x2(x - √2)(x + √2).
\(1\hept{\begin{cases}6x^2-8x+3x-4\\2x\left(3x-4\right)+\left(3x-4\right)\\\left(3x-4\right)\left(2x+1\right)\end{cases}}\)
\(2\hept{\begin{cases}7x^2-7xy-5x+5y+6xy\\7x\left(x-y\right)-5\left(x-y\right)+\frac{6xy\left(x-y\right)}{\left(x-y\right)}\\\left(x-y\right)\left(7x-5+\frac{6xy}{\left(x-y\right)}\right)\end{cases}}\)
\(3\hept{\begin{cases}5x\left(x-y\right)-15\left(x-y\right)\\\left(x-y\right)\left(5x-15\right)\end{cases}}\)
\(4,,2x^2+x=x\left(2x+1\right)\)
\(5\hept{\begin{cases}x^3-4x-3x^2+12\\x\left(x^2-4\right)-3\left(x^2-4\right)\\\left(x+2\right)\left(x-2\right)\left(x-3\right)\end{cases}}\)
\(6\hept{\begin{cases}2x+2y+x^2-y^2\\2\left(x+y\right)+\left(x+y\right)\left(x-y\right)\\\left(x+y\right)\left(2+x-y\right)\end{cases}}\)
\(7\hept{\begin{cases}\left(x^2y-2xy\right)-\left(xy-2y\right)+\left(xy-y\right)\\xy\left(x-2\right)-y\left(x-2\right)+y\left(x-1\right)\\y\left(X-2\right)\left(x-1\right)+y\left(x-1\right)\end{cases}}\Leftrightarrow y\left(x-1\right)\left(x-2+1\right)\)
\(8\hept{\begin{cases}x\left(2-y\right)+z\left(2-y\right)\\\left(2-y\right)\left(x+1\right)\end{cases}}\)
\(e,-5x+x^2-14\)
\(=x^2+2x-7x-14\)
\(=x\left(x+2\right)-7\left(x+2\right)\)
\(=\left(x+2\right)\left(x-7\right)\)
\(f,x^3+8+6x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+2x+4\right)+6x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+8x+4\right)\)
\(g,15x^2-7xy-2y^2\)
\(=15x^2+3xy-10xy-2y^2\)
\(=3\left(5x+y\right)-2y\left(5x+y\right)\)
\(=\left(5x+y\right)\left(3-2y\right)\)
\(h,3x^2-16x+5\)
\(=3x^2-x-15x+5\)
\(=x\left(3x-1\right)+5\left(3x-1\right)\)
\(=\left(3x-1\right)\left(x+5\right)\)
\(a,x^3+2x^2y+xy^2=x\left(x^2+2xy+y^2\right)\)
\(=x\left(x+y\right)^2\)
\(b,4x^2-9y^2+4x-6y\)
\(=4x^2+4x+1-\left(9y^2+6y+1\right)\)
\(=\left(2x+1\right)^2-\left(3y+1\right)^2\)
\(=\left(2x-3y\right)\left(2x+3y+2\right)\)
\(c,-x^2+5x+2xy-5y-y^2\)
\(=-\left(x^2-2xy+y^2\right)+5\left(x-y\right)\)
\(=-\left(x-y\right)^2+5\left(x-y\right)\)
\(=\left(x-y\right)\left(y-x+5\right)\)
\(d,x^2+4x-12\)
\(=x^2-2x+6x-12\)
\(=x\left(x-2\right)+6\left(x-2\right)\)
\(=\left(x-2\right)\left(x+6\right)\)
Ta có ; x2 - 11x + 24
= x2 - 3x - 8x + 24
= x(x - 3) - (8x - 24)
= x(x - 3) - 8(x - 3)
= (x - 3)(x - 8)
\(x^3+4x^2+4x+3\)
\(=x^3+3x^2+x^2+3x+x+3\)
\(=x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+x+1\right)\)
\(x^2-y^2+4y-4\)
\(=x^2-\left(y^2-4y+4\right)\)
\(=x^2-\left(y-2\right)^2\)
\(=\left(x-y+2\right)\left(x+y-2\right)\)
\(x^4+x^3y-xy^3-y^4\)
\(=x^3\left(x+y\right)-y^3\left(x+y\right)\)
\(=\left(x+y\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)
Chúc bạn học tốt.
Câu 2 nha
\(a,x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(c,x^2-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
x2+y2-x2y2+xy-x-y=x2-x2y2+y2-y-x+xy
=x(1-y2)+y(y-1)-x(1-y)
=x2(y-1)(y+1)+y(y-1)+x(y-1)
=-x2(y-1)(y+1)+y(y-1)+x(y-1)
=(y-1)(-x2(y+1)+y+x)
f) x4+2x2-4x-4=(x3.x+x3.2)-(2x.2+2.2)
=x3(x+2)-2(x+2)
=(x3-2)(x+2)