Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + 4x – y2 + 4;
=x2+4x+4-y2
=(x+2)2-y2
=(x+2-y)(x+2+y)
b) 3x2 + 6xy + 3y2 – 3z2;
=3.(x2+2xy+y2)-3z2
=3.(x+y)2-3z2
=3.[(x+y)2-z2]
=3.(x+y-x)(x+y+z)
c) x2 – 2xy + y2 – z2 + 2zt – t2.
=(x-y)2-(z2-2zt+t2)
=(x-y)2-(z-t)2
=[(x-y)-(z-t)][(x-y)+(z-t)]
=(x-y-z+t)(x-y+z-t)
a) 5x ( x - 2000 ) - x + 2000 = 0
5x ( x - 2000 ) - ( x - 2000 ) = 0
5x ( x - 2000 ) = 0
\(\Rightarrow\orbr{\begin{cases}5x=0\\x-2000=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2000\end{cases}}\)
Vậy ....
b) x3 - 13x = 0
x ( x2 - 13 ) = 0
x ( x - \(\sqrt{13}\)) - ( x + \(\sqrt{13}\)) = 0
\(\Rightarrow\hept{\begin{cases}x=0\\x-\sqrt{13}\\x+\sqrt{13}\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x=\sqrt{13}\\x=\sqrt{-13}\end{cases}}\)
Vậy ....
a) x2 + 6 + 9
= x2 + 2 . 3 . x + 32
= ( x + 3 )2
b) 10x - 25 - x2
= - ( x2 - 10x + 25 )
= - ( x - 5 )2
c) 8x3 - 1/8
= ( 2x )3 - ( 1/2 )3
= ( 2x - 1/2 ) ( 4x2 + x + 1/4 )
d) 1/25 x2 - 64x2
= ( 1/5x )2 - ( 8x )2
= ( 1/5x + 8x ) ( 1/5 - 8x )
\(x^3-13x=0\)
<=> \(x\left(x^2-13\right)=0\)
<=> \(x\left(x-\sqrt{13}\right)\left(x+\sqrt{13}\right)=0\)
<=> \(x=0\)
hoặc \(x-\sqrt{13}=0\)
hoặc \(x+\sqrt{13}=0\)
<=> .....
a) Ta có : x2 + 4x – y2 + 4
= x2 + 4x + 4 - y2
= (x + 2)2 - y2
= (x + 2 - y)(x + 2 + y)
b) 3x2 + 6xy + 3y2 - 3z2
= 3(x2 + 2xy + y2) - 3z2
= 3(x + y)2 - 3z2
= 3[(x + y)2 - z2]
= 3(x + y - z)(x + y + z)
\(x^2+4x-y^2+4\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x-y+2\right)\left(x+y+2\right)\)
hk tốt
^^
a) x2 + 4x – y2 + 4;
=x2+4x+4-y2
=(x+2)2-y2
=(x+2-y)(x+2+y)
b) 3x2 + 6xy + 3y2 – 3z2;
=3.(x2+2xy+y2)-3z2
=3.(x+y)2-3z2
=3.[(x+y)2-z2]
=3.(x+y-x)(x+y+z)
c) x2 – 2xy + y2 – z2 + 2zt – t2.
=(x-y)2-(z2-2zt+t2)
=(x-y)2-(z-t)2
=[(x-y)-(z-t)][(x-y)+(z-t)]
=(x-y-z+t)(x-y+z-t)
a; \(x^2+4x-y^2+4=x^2+4x+4-y^2=\left(x+2\right)^2-y^2=\left(x+y-2\right)\left(x-y+2\right)\)
b; \(3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y-z\right)\left(x+y+z\right)\)
c, \(x^2-2xy+y^2-z^2+2zt-t^2=\left(x-y\right)^2-\left(z^2-2zt+t^2\right)=\left(x-y\right)^2-\left(z-t^2\right)=\left(x-y-z+t\right)\left(x+y+z-t\right)\)
a) \(=x^2+2xy+y^2-x^2+y^2=2xy+2y^2=2y\left(x+y\right)\)
b) \(=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)
c) \(=3\left[\left(x^2+2xy+y^2\right)-z^2\right]=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)
d) \(=\left(2xy+1+2x+y\right)\left(2xy+1-2x-y\right)\)
e) \(=\left(x-3\right)\left(x^2+3x+9\right)-2x\left(x-3\right)=\left(x-3\right)\left(x^2+x+9\right)\)
f) \(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)=\left(x+5\right)\left(x^2-6x+25\right)\)
a) \(\left(x+y\right)^2-\left(x^2-y^2\right)\)
\(=x^2+2xy+y^2-x^2+y^2\)
\(=2y^2+2xy\)
\(=2y\left(x+y\right)\)
c) \(3x^2+6xy+3y^2-3z^2\)
\(=3\left(x^2+2xy+y^2-x^2\right)\)
\(=3\left[\left(x+y\right)^2-z^2\right]\)
\(=3\left(x+y+z\right)\left(x+y-z\right)\)
d) \(\left(2xy+1\right)^2-\left(2x+y\right)^2\)
\(=\left(2xy+1+2x+y\right)\left(2xy+1-2x-y\right)\)
\(=\left[\left(2xy+2x\right)+\left(y+1\right)\right]\left[\left(2xy-2x\right)-\left(y-1\right)\right]\)
\(=\left[2x\left(y+1\right)+\left(y+1\right)\right]\left[2x\left(y-1\right)-\left(y-1\right)\right]\)
\(=\left(2x+1\right)\left(y+1\right)\left(2x-1\right)\left(y-1\right)\)
\(=\left(4x^2-1\right)\left(y^2-1\right)\)
a) \(x^2+4x-y^2+4=\left(x^2+4x+4\right)-y^2\)
\(\left(x+2\right)^2-y^2=\left(x+2-y\right).\left(x+2+y\right)\)
b) \(3x^2+6xy+3y^2-3z^2\Leftrightarrow\left(\sqrt{3}x+\sqrt{3}y\right)^2-\left(\sqrt{3}z\right)^2\)
\(\Leftrightarrow\left(\sqrt{3}x+\sqrt{3}y-\sqrt{3}z\right).\left(\sqrt{3}x+\sqrt{3}y+\sqrt{3}z\right)\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)
\(\Leftrightarrow\left(x-y\right)^2-\left(z-t\right)^2=\left(x-y-z+t\right)\left(x-y+z-t\right)\)
Áp dụng HĐT a2 - b2 = ( a - b )( a + b )
và tính chất an.bn = ( a.b )n ( với n ∈ N* )
a) ( 3x + 1 )2 - ( x + 1 )2
= [ ( 3x + 1 ) - ( x + 1 ) ][ ( 3x + 1 ) + ( x + 1 ) ]
= ( 3x + 1 - x - 1 )( 3x + 1 + x + 1 )
= 2x( 4x + 2 )
= 2x.2( 2x + 1 )
= 4x( 2x + 1 )
b) ( x + y )2 - ( x - y )2
= [ ( x + y ) - ( x - y ) ][ ( x + y ) + ( x - y ) ]
= ( x + y - x + y )( x + y + x - y )
= 2y.2x = 4xy
c) ( 2xy + 1 )2 - ( 2x + y )2
= [ ( 2xy + 1 ) - ( 2x + y ) ][ ( 2xy + 1 ) + ( 2x + y ) ]
= ( 2xy + 1 - 2x - y )( 2xy + 1 + 2x + y )
= [ ( 2xy - 2x ) - ( y - 1 ) ][ ( 2xy + 2x ) + ( y + 1 ) ]
= [ 2x( y - 1 ) - ( y - 1 ) ][ 2x( y + 1 ) + ( y + 1 ) ]
= ( y - 1 )( 2x - 1 )9 y + 1 )( 2x + 1 )
d) 9( x - y )2 - 4( x + y )2
= 32( x - y )2 - 22( x + y )2
= [ 3( x - y ) ]2 - [ 2( x + y ) ]2
= ( 3x - 3y )2 - ( 2x + 2y )2
= [ ( 3x - 3y ) - ( 2x + 2y ) ][ ( 3x - 3y ) + ( 2x + 2y ) ]
= ( 3x - 3y - 2x - 2y )( 3x - 3y + 2x + 2y )
= ( x - 5y )( 5x - y )
e) ( 3x - 2y )2 - ( 2x - 3y )2
= [ ( 3x - 2y ) - ( 2x - 3y ) ][ ( 3x - 2y ) + ( 2x - 3y ) ]
= ( 3x - 2y - 2x + 3y )( 3x - 2y + 2x - 3y )
= ( x + y )( 5x - 5y )
= ( x + y )5( x - y )
f) ( 4x2 - 4x + 1 ) - ( x + 1 )2
= ( 2x - 1 )2 - ( x + 1 )2
= [ ( 2x - 1 ) - ( x + 1 ) ][ ( 2x - 1 ) + ( x + 1 ) ]
= ( 2x - 1 - x - 1 )( 2x - 1 + x + 1 )
= 3x( x - 2 )
\(a,x^2+6x+9\)
\(=x^2+3x+3x+9\)
\(=\left(x^2+3x\right)+\left(3x+9\right)\)
\(=x.\left(x+3\right)+3.\left(x+3\right)\)
\(=\left(x+3\right).\left(x+3\right)\)
\(=\left(x+3\right)^2\)
\(b,10x-25-x^2\)
\(=-\left(x^2-2.5.x+5^2\right)\)
\(=-\left(x-5\right)^2\)
\(c,x^2+4x-y^2+4\)
\(=\left(x^2+2.2.x+2^2\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right).\left(x+2+y\right)\)
\(d,3x^2+6xy+3y^2-3z^2\)
\(=3.[\left(x^2+2xy+y^2\right)-z^2]\)
\(=3.[\left(x+y\right)^2-z^2]\)
\(=3.\left(x+y-z\right)\left(x+y+z\right)\)
\(e,x^2-2xy+y^2-z^2+2zt-t^2\)
\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=[\left(x-y\right)-\left(z-t\right)].[\left(x-y\right)+\left(z-t\right)]\)
\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)
bai tim x bai 5 co