Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + 6x + 9 = x2 + 2.3.x + 32 = (x + 3)2
b) 10x - 25 - x2 = - (x2 - 2.5.x + 52) = - (x - 5)2
c) \(8x^3-\dfrac{1}{8}=\left(2x\right)^3-\left(\dfrac{1}{2}\right)^3=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
d) 25x2 - 64y2 = (5x)2 - (8y)2 = (5x - 8y)(5x + 8y)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
a, 8x^3 - 1/8
= (2x)^3 - (1/2)^3
= ( 2x - 1/2) ( 4x^2 + x + 1/4)
b, 1/25.x^2 - 64y^2 = (1/5x)^2 - (8y)^2 = ( 1/5x - 8y)(1/5x+8y)
Đúng xho mình nha )
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
Bài 1.
a) x( 8x - 2 ) - 8x2 + 12 = 0
<=> 8x2 - 2x - 8x2 + 12 = 0
<=> 12 - 2x = 0
<=> 2x = 12
<=> x = 6
b) x( 4x - 5 ) - ( 2x + 1 )2 = 0
<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0
<=> 4x2 - 5x - 4x2 - 4x - 1 = 0
<=> -9x - 1 = 0
<=> -9x = 1
<=> x = -1/9
c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )
<=> -4x2 - 4x + 35 = 4x2 - 25
<=> -4x2 - 4x + 35 - 4x2 + 25 = 0
<=> -8x2 - 4x + 60 = 0
<=> -8x2 + 20x - 24x + 60 = 0
<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0
<=> ( 2x - 5 )( -4x - 12 ) = 0
<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
d) 64x2 - 49 = 0
<=> ( 8x )2 - 72 = 0
<=> ( 8x - 7 )( 8x + 7 ) = 0
<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)
e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0
<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0
<=> ( x + 3 )2 [ x( x + 1 ) + 7( x + 1 ) ] = 0
<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0
<=> x = -3 hoặc x = -1 hoặc x = -7
g) ( x2 + 1 )( x2 - 8x + 7 ) = 0
Vì x2 + 1 ≥ 1 > 0 với mọi x
=> x2 - 8x + 7 = 0
=> x2 - x - 7x + 7 = 0
=> x( x - 1 ) - 7( x - 1 ) = 0
=> ( x - 1 )( x - 7 ) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)
Bài 2.
a) ( x - 1 )2 - ( x - 2 )( x + 2 )
= x2 - 2x + 1 - ( x2 - 4 )
= x2 - 2x + 1 - x2 + 4
= -2x + 5
b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2
= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4
= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )
= -60x2 + 40x2 + 49
d) ( x + y )2 - ( x + y - 2 )2
= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]
= ( x + y - x - y + 2 )( x + y + x + y - 2 )
= 2( 2x + 2y - 2 )
= 4x + 4y - 4
Bài 3.
A = 3x2 + 18x + 33
= 3( x2 + 6x + 9 ) + 6
= 3( x + 3 )2 + 6 ≥ 6 ∀ x
Đẳng thức xảy ra <=> x + 3 = 0 => x = -3
=> MinA = 6 <=> x = -3
B = x2 - 6x + 10 + y2
= ( x2 - 6x + 9 ) + y2 + 1
= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)
=> MinB = 1 <=> x = 3 ; y = 0
C = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Đẳng thức xảy ra <=> 5x2 = 0 => x = 0
=> MinC = 5 <=> x = 0
D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )
Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN
7x2 - 8x + 7
= 7( x2 - 8/7x + 16/49 ) + 33/7
= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x
Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7
=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7
1/ phân tích thành nhân tử ;
= C2-( a +b )2=( c-a -b ) . ( c+a +b )
a)\(6x^2-9xy\)
\(=3x\left(2x-3y\right)\)
b)\(x^2-y^2-3x+3y\)
\(=\left(x-y\right)\left(x+y\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-3\right)\)
c)\(x^4-8x^2-9\)
\(=x^4+x^2-9x^2-9\)
\(=x^2\left(x^2+1\right)-9\left(x^2+1\right)\)
\(=\left(x^2-9\right)\left(x^2+1\right)\)
\(=\left(x+3\right)\left(x-3\right)\left(x^2+1\right)\)
d)\(x^4-4\left(x^2+5\right)-25\)
\(=\left(x^2-5\right)\left(x^2+5\right)-4\left(x^2+5\right)\)
\(=\left(x^2+5\right)\left(x^2-5-4\right)\)
\(=\left(x^2+5\right)\left(x^2-9\right)\)
\(=\left(x^2+5\right)\left(x-3\right)\left(x+3\right)\)
a) 5x ( x - 2000 ) - x + 2000 = 0
5x ( x - 2000 ) - ( x - 2000 ) = 0
5x ( x - 2000 ) = 0
\(\Rightarrow\orbr{\begin{cases}5x=0\\x-2000=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2000\end{cases}}\)
Vậy ....
b) x3 - 13x = 0
x ( x2 - 13 ) = 0
x ( x - \(\sqrt{13}\)) - ( x + \(\sqrt{13}\)) = 0
\(\Rightarrow\hept{\begin{cases}x=0\\x-\sqrt{13}\\x+\sqrt{13}\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x=\sqrt{13}\\x=\sqrt{-13}\end{cases}}\)
Vậy ....
a) x2 + 6 + 9
= x2 + 2 . 3 . x + 32
= ( x + 3 )2
b) 10x - 25 - x2
= - ( x2 - 10x + 25 )
= - ( x - 5 )2
c) 8x3 - 1/8
= ( 2x )3 - ( 1/2 )3
= ( 2x - 1/2 ) ( 4x2 + x + 1/4 )
d) 1/25 x2 - 64x2
= ( 1/5x )2 - ( 8x )2
= ( 1/5x + 8x ) ( 1/5 - 8x )
\(x^3-13x=0\)
<=> \(x\left(x^2-13\right)=0\)
<=> \(x\left(x-\sqrt{13}\right)\left(x+\sqrt{13}\right)=0\)
<=> \(x=0\)
hoặc \(x-\sqrt{13}=0\)
hoặc \(x+\sqrt{13}=0\)
<=> .....
\(x^2+6x+9=x^2+2.3x+3^2=\left(x+3\right)^2\)
\(10x-25-x^2=-\left(x^2-2.5x+5^2\right)=-\left(x-5\right)^2\)
\\(8x^3-\frac{1}{8}=\left(2x\right)^3-\left(\frac{1}{2}\right)^3=\left(2x-\frac{1}{2}\right)\left(4x^2+x+\frac{1}{4}\right)\)
\(\frac{1}{25}x^2-64y^2=\left(\frac{1}{5}x\right)^2-\left(8y\right)^2=\left(\frac{1}{5x}-8y\right)\left(\frac{1}{5x}+8y\right)\)
cái này phải hs a thịnh
em ko biết