Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4.\left(2x+3\right)\left(2x-1\right)\left(x-3\right)\left(4x+1\right)+44x^2\)
\(=4.\left(4x^2+4x-3\right)\left(4x^2-11x-3\right)+44x^2\)
Đặt \(4x^2+4x-3=t\)
\(\Rightarrow4.\left(2x+3\right)\left(2x-1\right)\left(x-3\right)\left(4x+1\right)+44x^2\)
\(=4.t.\left(t-15x\right)+44x^2\)
\(=4t^2-60tx+44x^2\)
\(=4.\left(t^2-15tx+11x^2\right)\)
Tự lm nốt nhé~
a) \(A=\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x+6\right)-10\)
\(=\left(x^2+8x+12\right)\left(x^2+8x+15\right)-10\)
Đặt \(x^2+8x+12=t\)
Khi đó ta có:
\(A=t\left(t+3\right)-10\)
\(=t^2+3t-10\)
\(=\left(t-2\right)\left(t+5\right)\)
Thay trở lại ta có:
\(A=\left(x^2+8x+10\right)\left(x^2+8x+17\right)\)
b) \(B=x\left(2x+1\right)\left(2x+3\right)\left(4x+8\right)-18\)
\(=\left(4x^2+8x\right)\left(4x^2+8x+3\right)-18\)
Đặt \(4x^2+8x=t\)
Khi đó ta có:
\(B=t\left(t+3\right)-18=t^2+3t-18=\left(t-3\right)\left(t+6\right)\)
Thay trở lại ta có:
\(B=\left(4x^2+8x-3\right)\left(4x^2+8x+6\right)=2\left(4x^2+8x-3\right)\left(2x^2+4x+3\right)\)
a, Đặt A=...=(x+2)(x+6)(x+3)(x+5)-10=(x2+8x+12)(x2+8x+15)-10
Đặt x2+8x+12=y
=>A=y(y+3)-10=y2+3y-10=y2-2y+5y-10=y(y-2)+5(y-2)=(y-2)(y+5)=(x2+8x+12-2)(x2+8x+12+5)=(x2+8x+10)(x2+8x+17)
b, Đặt B=...=x(4x+8)(2x+1)(2x+3)-18=(4x2+8x)(4x2+8x+3)-18
Đặt 4x2+8x=t
=>B=t(t+3)-18=t2+3t-18=t2-3t+6t-18=t(t-3)+6(t-3)=(t-3)(t+6)=(4x2+8x-3)(4x2+8x+6)
\(\left(x+1\right)\left(x+3\right)\left(x+4\right)\left(x+6\right)-7\)
\(=\left\{\left(x+1\right)\left(x+6\right)\right\}.\left\{\left(x+3\right)\left(x+4\right)\right\}-7\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+12\right)-7\) \(\left(1\right)\)
đặt \(x^2+7x+9=a\)
<=> \(\left(1\right)=\left(a-3\right)\left(a+3\right)-7\)
\(=a^2-16\)
\(=\left(a-4\right)\left(a+4\right)\)
hay\(\left(1\right)=\) \(\left(x^2+7x+9-4\right)\left(x^2+7x+9+4\right)\)
\(=\left(x^2+7x+5\right)\left(x^2+7x+13\right)\)
những câu còn lại cũng nhóm đầu với cuối , hai cái giữa với nhau , xong làm tương tự câu trên
học tốt
a) (x + 1)(x + 3)(x + 4)(x + 6) - 7
= (x + 1)(x + 6) (x + 3)(x + 4) - 7
= (x2 + 7x + 6)(x + 7x + 12) - 7
Đặt t = x2 + 7x + 6
Ta có : t(t + 6) - 7
= t2 + 6t - 7
= t2 + 6t + 9 - 16
= (t + 3) - 16
= (t + 3 - 4)(t + 3 + 4)
= (t - 1)(t + 7)
Nên :
Pt = (x2 + 7x + 6 - 1)(x2 + 7x + 6 + 7)
= (x2 + 7x + 5)(x2 + 7x + 13)
a: \(x^3-2x+4\)
\(=x^3+2x^2-2x^2-4x+2x+4\)
\(=\left(x+2\right)\left(x^2-2x+2\right)\)
b: \(x^3-4x^2+12x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
c: \(x^3+2x^2+2x+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
\(1,\)
\(x^2-2x-4y^2-4y\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\(2,\)
\(x^4+2x^3-4x-4\)
\(=\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
\(3,\)
\(3x^2-3y^2-2\left(x-y\right)^2\)
\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)
\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)[3\left(x+y\right)-2\left(x-y\right)]\)
\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
\(4,\)
\(x^2-y^2-2x+2y\)
\(=x^2-y^2-2x+2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
a) x4 + 2x3 + 2x2 + 2x + 1
= x4 + 2x3 + x2 + x2 + 2x + 1
= ( x4 + 2x3 + x2 ) + ( x2 + 2x + 1 )
= x2( x2 + 2x + 1 ) + ( x2 + 2x + 1 )
= ( x + 1 )2( x2 + 1 )
b) 4x8 + 1
= 4x8 + 4x4 + 1 - 4x4
= ( 2x4 + 1 )2 - ( 2x2 )2
= ( 2x4 - 2x2 + 1 )( 2x4 + 2x2 + 1 )